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Abstract

This paper investigates abnormal behavior in individual stocks using two decades of high-frequency

U.S. stock market data. It identifies hundreds of thousands of short episodes where stocks exhibit "explo-

sive" behavior, deviating from the unit-root null hypothesis. These phenomena span multiple days, differ

from typical return movements, and affect a wide range of stocks, including liquid and large-cap stocks.

Explosive episodes account for a considerable portion of stocks’ idiosyncratic variance. These are tran-

sitional episodes with partial reversal, providing predictable and tradable returns, setting them apart from

large overnight and high-frequency jumps. I analyze stocks and their susceptibility to explosive behavior

in connection with aggregate market fluctuations. While downward explosions tend to cluster among

stocks and are more pro-cyclical, upward explosions appear as an idiosyncratic phenomenon. Explosive

episodes involve significant buying and selling pressure along with trading volume. To explain explo-

sive price movements, the paper introduces a model involving inelastic buyers, insiders, and competitive

sellers. It emphasizes the role of explosions in the price discovery process and addresses the observed

reversal. The frequency, severity, and reversal of explosiveness are explained by the expected size of in-

elastic demands, the knowledge possessed by a representative insider, and the frequency of seeing both

in the market. Using short interest dissemination dates, empirical tests validate the model’s predictions,

indicating a higher likelihood of explosive behavior in stocks with substantial reported short interest.

1Yury Olshanskiy: MIT Sloan School of Managements, email: ols@mit.edu. website: www.ols-y.com

I am grateful to my dissertation committee Hui Chen, Leonid Kogan, and Jiang Wang for their continuous support. I thank Allison

Cole, Maryam Farboodi, Joanne Im, Pierre Jaffard, Tong Liu, Debbie Lucas, Egor Matveev, Anya Nakhmurina, Robert C. Merton,

Lira Mota, Jonathan Parker, Anton Petukhov, Kirill Rudov, Antoinette Schoar, Lawrence Schmidt, Justin Rand Scott, Roman

Sigalov, Tim de Silva, Albert Shin, Markus Schwedeler, Maria Turina, David Thesmar, Adrien Verdelhan, Emil Verner, Haoxiang

Zhu, Jiaheng Yu, and seminar participants at MIT for their thoughtful comments and discussions. This research was supported with

Stone Finance PhD Fund and Mark Kritzam and Elizabeth Gorman Research Fund.

1

https://yolshanskiy.github.io/papers/Stock_Explosiveness.pdf
https://www.ols-y.com/


1 Introduction

Motivation

The primary focus of the finance literature centers around two key aspects of asset price dynamics: risk

and average return. The vast body of research studies anomalies by examining average returns and the

associated risk compensation (e.g., Fama and French (1992), Lakonishok et al. (1994)). Another significant

strand of literature conducts event studies, analyzing pre-trends and post-trends while focusing on average

returns and volatility surrounding events (e.g., Shleifer (1986), Bernard and Thomas (1989), Bernanke and

Kuttner (2005)). In these lines of research, models are proposed that primarily rely on and target fit the

aggregated statistics, such as total returns, variance-covariance structures, and various other mainly "static"

aggregate measures of returns, including higher moments. (e.g., Merton (1980), French et al. (1987), Harvey

and Siddique (2000)). These realized statistics typically aggregate the objects under study and serve as

inputs for subsequent regression analyses. However, the actual "transitional dynamics," which emphasizes

the specific price path of the assets, usually does not play a significant role in these studies.

This paper aims to provide a novel contribution by highlighting the importance of considering the tran-

sitional dynamics, in addition to risk and average return, as it contains unique and valuable information. The

research is a broad study of the explosiveness in individual stock prices over 20 years of observation. In this

context, explosiveness refers to transitional price dynamics, which typically persist from half a trading day

to multiple days or even weeks. It is characterized by accelerated price changes, where past prices appear

to predict future price movements, creating persistent short-living momentum. This transitional dynamics

are unlikely to be consistent with the Ito semimartingale dynamics and, by extension, with most asset pric-

ing models. Yet it emerges as an exceptionally prevalent phenomenon, being an essential part of the price

discovery process in the market.

More formally, the term "explosiveness," borrowed from the econometric literature (e.g., Diba and

Grossman (1988), Phillips et al. (2011)) where it denotes processes outside the unit-root circle, is employed

in this paper to describe stock price dynamics that, ex-post, statistically inconsistent with the independent

and identically distributed (i.i.d.) types of price dynamics over a certain period, as represented by the equa-

tion:1

∆ logPricet “ αplogPricet´1 ´ p̄q ` εt ,

with α ą 0. In essence, the paper investigates the transitional dynamics that features a stochastic form of

convexity in price path. Here, "convexity" pertains to the persistent increase (or decrease) in average returns

1Section 3 intoduces the concept more formally.
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within the price adjustment window.

A prime illustration of an explosive episode in individual stocks could be the GameStop (GME) price

dynamics in January 2021. See Figure 1. The red line drawn over the GME’s log-price stamps emphasizes

how the price transitioned to its pick values. Despite all volatility, the log price path exhibits a distinct

convex pattern, showcasing the growth in average returns as prices increase.

While the extremeness and absolute magnitudes of the price dynamics exhibited by GME might seem

exaggerated, it is essential to recognize that this explosiveness is not an isolated case. In fact, explosive

price movements are far more common in the data than expected under the assumption of an i.i.d. process

or within the framework of standard asset pricing jump-diffusion models for returns. According to the

procedure developed in the paper, the detection of the episodes occurs on approximately 2.4% to 5.2% of

trading days for individual stocks. It is detected up to 6-7 times more frequently than one would anticipate

under standard models.

However, it is essential to note that, unlike the GME case, many of these episodes do not resemble

"bubble"-like events; rather, they exhibit price discovery dynamics. The paper documents the existence

of a partial reversal following the explosive dynamics. Furthermore, this accelerated price movement can

occur in both directions, either as an increase or a decrease in prices. To illustrate this concept, Figure 2

showcases several other typical examples of explosive episodes observed in the data and detected using the

implemented mechanism.

The observation of unorthodox price dynamics across different types of stocks serves as a strong moti-

vator for further exploration of the underlying market mechanisms and economics that drive it. While we

have a well-established understanding of how jumps and volatility arise from the incorporation of new infor-

mation, the phenomenon of explosive price discovery extends beyond the conventional models’ scope. The

absence of complete price reversals implies that explanations invoking "irrationally exuberant" behavior by

market participants, as suggested by Miller (1977), may be incomplete. As such, explosiveness potentially

conveys valuable information about the market’s underlying primitives embedded within the transitional dy-

namics. Consequently, this paper is driven to propose and test a mechanism capable of generating explosive

episodes and their associated effects, including partial reversals. The primary objective of this paper is to

accomplish this while employing realistic components that align with observed data.

Findings

This paper is divided into two main parts: the empirical part and the theoretical part. The empirical part

involves constructing and analyzing the explosiveness measure, as well as testing the theoretical mechanism,
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Figure 1: Game Stop, January 2021

relying on the measure as the primary dependent variable. The theoretical part comprises two modeling

steps. In the first step, I demonstrate a mechanism that could generate explosiveness, and in the second step,

I develop this mechanism to the point where it can generate price discovery.

The paper begins by providing a mathematical description of explosiveness and a brief explanation of

the supremum Augmented Dickey-Fuller (SADF) procedure, initially introduced by Phillips et al. (2011),

and adapted to detect explosive episodes in the high-frequency data of individual stocks. By applying this

adapted procedure to 20 years of data in the U.S. common shares universe, encompassing over 22 mil-

lion stock-date observations, the paper uncovers hundreds of thousands of explosive episodes in individual

stocks. To my knowledge, this is the first paper that systematically analyzes explosiveness or any other

high-frequency irregularities on such a large scale.

The precise count of explosive episodes varies based on the estimation method’s assumptions. However,

at a 1% significance level in the detection test, I identified six to seven times more explosive cases than

would be expected under the null hypothesis with an auto-regressive process for returns. These explosive

episodes can be classified into two distinct types: explosions up and down, depending on the price change

direction. These two classes are almost evenly divided, with slightly more frequent cases of explosive up.

The paper provides an overview of the basic average characteristics of these explosive episodes, revealing

that the average magnitude of change prior to detection is approximately 10%.

To gain a deeper understanding of the potential drivers of these explosive episodes, I analyze explosive-

ness in the overall market and double-sorted portfolios that form the basis of standard long-short strategies.
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Figure 2: Examples of detected explosions

This figure provides visual examples of various detected explosive episodes within a window spanning 7 days before and 7 days

after the detection timestamp. It displays log-price data for the respective stocks, with the tickers and detection dates indicated

above each plot. The examples include explosive episodes with subsequent reversal, with partial reversal, with no reversal, and

with continuing drift afterwards. 5



The results reveal that both the market and these portfolios exhibit a level of explosiveness that is lower

than what individual stocks exhibit but still significantly higher than the null hypothesis predicts. Notably,

the market itself is approximately four times more likely to display explosiveness compared to what the

null hypothesis suggests. While market explosions are associated with individual stock explosions, they

are insufficient to fully explain the emergence of explosive episodes in individual stocks, highlighting their

unique, idiosyncratic nature. For instance, only 5.3% of detected upward explosive episodes in individual

stocks coincide with dates featuring detected market explosions.

Interestingly, only explosiveness down is more frequent for the set of portfolios, while explosiveness

up is detected consistent with the existence of false positive detections. Explosiveness down is much more

clustered and indicates potential differences between these phenomena for individual stocks. Explosion

down is a less idiosyncratic phenomenon. This hypothesis gains further confirmation when I perform risk

adjustment for the raw stock returns and analyze the explosiveness of factors compared to the explosiveness

of individual stocks.

The paper proceeds to investigate other properties of the explosive episodes. Firstly, it reveals that

systematic reversals accompany explosive episodes following the moment of detection. These reversals,

ranging from 10% to 15% of the change before detection, cannot be explained by bid-ask spreads and

suggest the potential for a tradable strategy. In the sample of liquid stocks, it implies a persistent tradable

daily alpha ranging from 0.6% to 1.2%.

Moreover, portfolios constructed based on the stocks following the detection of explosiveness generate

similar alpha that cannot be explained by standard Fama-French factors, along with momentum and short-

term reversal factors. Notably, in the same sample of liquid stocks, jumps of similar magnitudes are not

followed by tradable reversals, emphasizing the role of the relatively smooth transition in the appearance of

reversals.

Meanwhile, most explosive transitions persist in the following weeks, underscoring the role of explo-

sion as a price discovery mechanism. The significance of explosiveness in the price dynamics is further

confirmed by examining its contribution to the idiosyncratic volatility of individual stocks. On average, a

stock experiences approximately 20.8% of its idiosyncratic daily variance on just 2.7% of explosive dates.

This percentage, disproportionate to the number of daily events, rises to 35.2% when considering the days

around the explosion detection. Despite a gradual decrease in the likelihood of explosiveness over the

twenty years of observations, explosive episodes continue to play an essential role in volatility, particularly

the explosive up episodes.

Finally, I examine explosiveness in relation to a comprehensive array of firm characteristics, utilizing
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variables commonly employed in cross-sectional asset pricing. Explosiveness, whether in an upward or

downward direction, is consistently and visibly evident across diverse dimensions of firm fundamentals

and past performance measures. I document both close-to-linear and non-monotonic relationships between

firm characteristics and explosiveness. Through analyses utilizing non-penalized and penalized logistic

regressions, it becomes evident that some dependencies are not consistently stable and are contingent on

other firm characteristics. Nevertheless, explosiveness up seems to be influenced by size, momentum, and

previous volume, suggesting that smaller firms and those with extreme returns over various horizons are

more prone to exhibit explosive behavior. In contrast, explosiveness down is more closely associated with

only variables describing momentum, such as the 12-to-2 return and closeness to the 52-week high.

Next, I demonstrate that explosive episodes are characterized by abnormal trading volume and buying

pressure. Furthermore, by comparing these characteristics with jump episodes, I highlight that explosive

episodes exhibit more pronounced abnormal buying pressure rather than just increased volume. This em-

phasizes the significance of directional trading typically associated with these events. Additionally, other

liquidity measures based on bid-ask spread do not deteriorate to the same extent as they do for jump episodes.

When measuring the time around explosive episodes in terms of trading volume, I demonstrate that these

episodes continue to exhibit explosiveness in new time frames.

The paper transitions to proposing a model framework that can generate explosive episodes. First, I

introduce a model with a minimal set of assumptions inspired by short-squeeze episodes. It includes an

expected inelastic demand from an impatient inelastic buyer of an unknown size, while competitive sellers

possess a limited amount of the asset. To simplify the model, it considers a two-stage framework in which

sellers choose the price to sell, and buyers ultimately purchase the required amount of the asset at the best

available price.

The model exhibits an asymmetric equilibrium where sellers propose different prices, and these prices

increase explosively across the mass of sellers. This explosive price growth occurs because, to support the

equilibrium, sellers submitting higher prices demand compensation for selling “later” with lower probability.

As long as the size of the inelastic block order is distributed so that the additional buy amount is less

likely than the previous volume, the price will grow with acceleration. Implementing this mechanism in an

environment with a fixed amount of trading volume per unit of time would automatically lead to explosive

price changes over time.

The model reflects the concept of market timing, where selling at a more favorable price comes with a

higher risk of not successfully executing the trade. While this mechanism would give rise to temporary non-

linear price impacts in the market, it does not align with the description of an explosion as part of the price
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discovery process. This motivates incorporating informed traders into the framework. I propose a dynamic

model with unknown demand from either an insider or an impatient block buyer. Sellers dynamically choose

when to sell their endowment, updating their beliefs about the type of buyer in the market.

Sellers with a remaining endowment of the asset face a decision whether to sell immediately or wait.

The tradeoff, in comparison to the first model, is not just between selling and not selling but also involves

dynamically changing adverse selection. Delaying the sale provides sellers with additional information to

update their Bayesian probabilities about the buyer’s identity and the potential loss to the buyer, conditional

on selling. With these mechanisms, explosions represent not only temporary price impacts from inelastic

liquidity traders but also the inflow of insider information into prices.

The model is parameterized by the ex-ante probability of insiders, the distributions of insiders’ knowl-

edge, the distribution of asset inelastic demand for an impatient buyer, and the mass and endowment of

competitive sellers. It has a unique continuous solution over a wide range of parameters, effectively only

restricted by trade conditions with the flavor of No-Trade Theorems (Milgrom and Stokey (1982), Tirole

(1982)). If insiders possess too much risk for sellers, there is no trade in the model. I inspect a closed-form

solution of the model under the assumption of exponential distributions for the inelastic demand size and

the knowledge possessed by insiders, providing a tractable comparative static analysis.

The model highlights essential ingredients for the appearance of explosive episodes and their role in

price discovery. First, inelastic demand in the market allows sellers to receive compensation for trading

against insiders. Second, the limited seller supply of the asset, combined with a distribution of inelastic

demand that allows extreme values, enables sellers to engage in a timing game. Third, the balance between

the frequency of insiders and their average knowledge dictates the curvature of the explosion and the size of

the relative reversal of the initial price change.

In the limiting case, I demonstrate that if informed traders mainly populate the model, the trade is either

impossible or features an immediate jump and a linear price impact following it. This finding is intriguing

as it highlights a different modeling structure for linear price impact compared to a substantial portion of

market microstructure models, where price impact is typically defined by the strategy of hiding trading

actions among noise traders (e.g., Kyle (1985)). As the share of inelastic buyers increases, the curvature

of the potential price path increases, with the maximum curvature occurring when the number of insiders

approaches zero. In this case, trading behavior resembles the first model described.

While the models discussed primarily focus on explaining explosive episodes in the upward direction,

they can be adapted to explain downward explosions by considering the available endowment as cash for

buying. In practice, raising liquidity is often easier than trying to borrow additional stocks on short notice
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during a market explosion. Therefore, the main focus of further testing the mechanism remains on explaining

upward explosions.

The models generate an important prediction regarding the timing of explosive episodes. They suggest

that explosions are more likely to occur in an environment with a higher expected inelastic demand and

a lower probability of insiders. To test this prediction, I conduct a study of explosiveness in stock prices

following the dissemination of short interest data. The rationale behind this test is that heavily shorted stocks

are more likely to have inelastic demand from short sellers looking to cover their positions, and they are less

likely to have insiders who may have taken positions in the short interest. Given the previously established

predictive power of downward price drift following the dissemination of short interest data, a relevant test

is to search for upward explosive episodes as a reaction to this dissemination.

To verify the connection between short interest and explosiveness up, I employ two measures: the short

interest ratio (SIR) and partialled out SIR, which captures the abnormal part of SIR compared to similar in-

dustries and stocks with corresponding firm characteristics. Initially, utilizing these measures, I corroborate

previous findings regarding the informational content of SIR in my sample. After the dissemination of the

data, heavily shorted stocks exhibit significantly negative returns, ranging from -7% to -9% in annualized

terms over the subsequent 10-day intervals.

Despite the initial expectation of a decrease in explosiveness, there is a statistically significant 10-20%

relative increase compared to the default detection rate. These results are obtained using fixed-effect regres-

sions. The regression specification accounts for specific dates, firms, and the standard firm characteristics

often considered in short interest and event study analysis to mitigate the influence of other potential ex-

planatory factors for the variance in explosiveness. The findings maintain their robustness across various

specifications, including those involving risk-adjusted prices for identifying explosive episodes.

To scrutinize the informational content following the dissemination more closely, I perform an event-

study-type analysis focusing on explosiveness immediately before and after the data’s release. This approach

enables a comparison of identical stocks with essentially the same firm characteristics. By employing analo-

gous fixed-effect regressions to explain the change in explosiveness through the alteration in disclosed SIR,

we discover that explosiveness does react to the information regarding (past) short interest. Furthermore,

the indicator of being in the top decile by SIR change emerges as the sole significant explanatory variable,

highlighting the significance of the informational content in influencing the likelihood of an explosive event

upward.

As an additional test, I examine other static measures following the dissemination of short interest. In

contrast to explosiveness, standard risk measures like within-period volatility, empirical quantiles of return
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distributions, and higher-order moments show minimal economic changes that could explain the increase

in explosiveness. The primary alteration observed is the direction of further movement, which tends to be

negative.

The final section of the paper discusses the robustness of the explosiveness detection mechanism within

the context of high-frequency stock data. The SADF test was initially developed for different data using

longer and less frequent time series. Although, in theory, under mild assumptions, its distribution should

converge to the theoretical function derived from Brownian motion integrals, it is an open question whether

it reasonably suits the highly fat-tailed distribution of individual stock returns in finite samples.

First, I demonstrate that simulating explosiveness under static returns while fitting only the first two

moments throughout estimation results in a slightly lower detection rate than the selected significance level.

I further bootstrap the actual returns from the high-frequency sample and show that the fat-tailed distribution

of returns increases the false detection rate. Then, I estimate the auto-correlation of returns from the sample

and simulate data based on randomly selected coefficients. The false detection rate increases to its maximum

values, which I can produce, reaching around 2.7% at the 1% significance level. This emphasizes that the

SADF procedure has natural limits and may fail to distinguish periods of high autocorrelation in auto-

regression. Despite this limitation, the detection rate of explosive episodes remains significantly higher than

the one suggested by the simulations.

Additional robustness tests are provided, including bootstrap simulations, stochastic volatility simula-

tions based on the Heston model, and simulations with scheduled overnight returns. None of these speci-

fications produce a false positive detection rate that describes the frequency at which we detect explosive

episodes in real data. This underscores the fundamental role of accelerated time-series dynamics in gener-

ating explosive episodes captured by the SADF-based approach.

Related Literature and Contribution

This study builds upon and contributes to the existing literature on empirical and theoretical research in

asset pricing, market microstructure, and financial econometrics. To maintain the structure of the section,

I will classify the related literature into different sections that correspond to each of these areas, namely

the High-Frequency Literature, Bubble Literature, Insider Trading Literature, Short Interest Literature, and

Other Literature.

High Frequency Literature.2 This paper contributes to the developing literature on high-frequency

asset pricing (e.g., Bollerslev et al. (2016), Li et al. (2017), Bollerslev (2022)). Analyzing TAQ data across

2The high frequency market microstructure literature will be discussed in Insider Trading Literature.
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the universe of U.S. common share stocks, it adds to our understanding of stock market behavior, identifying

a new common feature at the 5-20 day horizons, referred to as explosiveness. In doing so, the paper draws

upon the extensive literature on processing high-frequency data (e.g., Andersen et al. (2001), Barndorff-

Nielsen et al. (2009)) and estimating high-frequency factors and risk exposures (e.g., Aït-Sahalia et al.

(2020)).

The revealed transitory dynamics deviate from the conventional jump-diffusion model (e.g., Merton

(1980)) and its widely studied modifications (e.g., Andersen et al. (2007), Todorov and Bollerslev (2010),

Bollerslev and Todorov (2011a), Bollerslev et al. (2013)), which are primarily used to explain price move-

ments of individual stocks and underlying factors. The section on the detection of explosions contributes

to the emerging literature on studying violations of the Ito process in high-frequency data (e.g., Christensen

et al. (2022)), as well as the more general literature on violations of the i.i.d. assumption (e.g., Jacod et al.

(2017), Li et al. (2020), Li and Linton (2022)).

The findings of this paper are consistent with both hypotheses being statistically rejected in a variety of

stock types. However, several key differences exist between this paper and the literature on violations. First,

this paper considers lower frequency (5-10 minutes vs. 1 second) and longer horizons (10 days vs. intraday).

Second, the paper includes a diverse set of stocks, many of which are less liquid than the assets typically

considered in the literature. Third, most of the existing literature on Ito-violation does not delve into the

market mechanisms behind them, leaving room for interpretation. In contrast, this paper primarily links

these violations to the market environment. Here, it is closer to literature that studies specific events such as

flash crashes (e.g., Easley et al. (2011), Kirilenko et al. (2017)). The mechanism of dried liquidity, which is

implicitly the underlying mechanism in this paper, may share some similarities with these events. However,

there are notable differences. This paper primarily focuses on understanding price discovery, while events

like flash crashes involved temporary deviations that reversed within 10-60 minutes.

The dynamics observed in this paper bear some similarity to the concept of “gradual jumps” proposed

by Barndorff-Nielsen et al. (2009). They suggest that what is observed as a jump at lower frequencies might

be a series of jumps when viewed at a higher frequency3, gradually zooming in on the interval. Applying

the concept of gradual jumps to our lower frequency might lead to the ex-post detection of an explosion.

Mathematically separating these two phenomena could be challenging. Conceptually, the gradual jumps

could also be considered part of the explosive dynamic. However, most explosive episodes in this paper

continue over a more extended series of times, requiring an alternative approach for modeling.

The concept of "drift burst," as discussed in Christensen et al. (2022), and the more general concept

3The 5-minute interval considered in the paper is the low-frequency interval in Barndorff-Nielsen et al. (2009).
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of "persistent noise," as presented in Andersen et al. (2021), are somewhat related to the idea of explosive

episodes. These concepts revolve around the idea that there are times when the drift term in asset prices is not

negligible compared to the volatility terms. They recognize that there are episodes where drift can change

significantly, challenging the assumptions of standard continuous-time arbitrage-free price processes. While

these concepts share some common ground with explosive episodes, the structure and focus of explosions

are different. Explosions aim to capture the predictive power inherent in the current levels of prices and do

not assume that drift significantly exceeds the volatility.

Bubble Literature. While the main narrative of this paper is to demonstrate that explosive episodes are

typically not "mini-bubbles," it shares close relationships with studies on market mechanisms and detection

methods for bubbles. The primary tool used for detecting explosive episodes, the SADF procedure intro-

duced by Phillips et al. (2011), has its roots in the literature dedicated to identifying bubbles (Phillips et al.

(2015a), Homm and Breitung (2012), Phillips et al. (2015b), Phillips and Shi (2018)). This body of work

aims to locate instances of explosive behavior (Diba and Grossman (1988)) followed by a sudden burst in

long macroeconomic and financial time series. These tests have practical applications in identifying bubbles

in various markets, including significant stock indices such as NASDAQ and the S&P 500 (Phillips et al.

(2011); Homm and Breitung (2012), Phillips and Shi (2018)), cryptocurrencies (Cheung et al. (2015); Cor-

bet et al. (2018)), and in select studies related to housing (Coskun et al. (2020)), oil (Hau et al. (2020)), and

other markets. It is worth noting that these tests have yet to be widely applied to individual stocks thus far.

The paper’s motivation for employing the detection mechanism with a "double-rolling" procedure,

which involves one rolling of the original SADF procedure to identify explosions within a finite window

and then rolling that window, is twofold. Firstly, this approach is computationally efficient. Secondly, it

successfully captures the required phenomenon of acceleration in price changes.

The modeling of explosions in this paper shares similarities with the literature on bubbles (e.g., Harrison

and Kreps (1978), Barberis et al. (1998), Allen and Gale (2000)), which often focuses on the constraints on

short selling and the divergence of opinion, as seen in references such as Miller (1977), Shleifer and Vishny

(1997), and Abreu and Brunnermeier (2003). The presence of these factors, along with the existence of

informed traders, contributes to the generation of explosiveness in this paper, providing a link between the

literature and price-discovery literature.

Insider and Liquidation Trading. The extensive field of market microstructure studies the price dis-

covery process initiated by insiders (e.g., Kyle (1985), Huberman and Stanzl (2005)) and other liquidity

trading (e.g., Bertsimas and Lo (1998), Huberman and Stanzl (2005), Obizhaeva and Wang (2013)). The

prevailing mechanism is built on the assumption that informed traders disguise themselves as noise traders
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to extract knowledge. At the same time, sellers (or buyers) are compensated for their adverse selection, as

described in the seminal works Kyle (1985) and Kyle (1989). In this paper, a similar concept is employed,

but insiders do not hide behind noise traders; instead, they imitate big liquidity traders, allowing sellers

(market makers) to detect that they are dealing with consistent buying pressure.

The conventional Kyle model and its variations are not customized for generating an explosive pattern

since they typically result in insider trades having a constant and linear price impact. Models with multiple

insiders (e.g., Holden and Subrahmanyam (1992), Back et al. (2000)) and liquidity traders (e.g., Huber-

man and Stanzl (2005)) generally lead to a different phenomenon where information first enters the market

rapidly and then continues to drift slowly. While Kyle et al. (2017) does produce positive time-series mo-

mentum within the context of trading by overconfident oligopolistic investors, their model is more suited to

long-term dynamics with moderate momentum rather than for capturing explosive episodes.

The findings of the explosiveness and buying pressure association in the paper are consistent with the

previous literature, which showed that price changes are predictable by order flow (e.g., Hopman (2007),

Bouchaud et al. (2009), Cont et al. (2014)). More recent literature (e.g., Korajczyk and Murphy (2019),

Hirschey (2021)) confirms the assumption of a regular presence of big institutional orders and the role

of HFT traders that “lean with the wind" as formulated by Van Kervel and Menkveld (2019), effectively

amplifying the buying (selling) pressure from institutions. Nevertheless, to the best of my knowledge, the

explosive-type dynamics did not appear in the literature.

Short Interest Literature. A substantial body of literature has highlighted the informational content

carried in short interest data at both the individual stock level (e.g., Asquith et al. (2005), Boehmer et al.

(2008), Hong et al. (2015)) and aggregate level (e.g., Lynch et al. (2014), Rapach et al. (2016)). The primary

mechanism discussed in this literature is that since shorting is costly, mainly informed traders decide to short-

sell a stock, leading to heavily shorted stocks being predictors of subsequent negative returns. Conversely,

stocks with light short interest predict abnormal positive returns (e.g., Boehmer et al. (2010)). In line with

this hypothesis, stocks with heavy short interest have more negative returns when institutional ownership is

higher (e.g., Asquith et al. (2005)) and when shorting fees are greater (e.g., Drechsler and Drechsler (2014)).

However, this literature has not delved into the specific mechanisms of how price discovery occurs following

short interest reporting; it primarily focuses on abnormal risk-adjusted returns.

This paper contributes new insights into the dynamics following short interest dissemination. It reveals

that changes in short interest not only predict directional shifts but also the nature of the subsequent tran-

sitional dynamics. This finding aligns with the discoveries in Callen and Fang (2015) regarding changes

in crash risk after short interest dissemination. The novel evidence here is that these changes also apply
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to the positive side of the distribution, forecasting explosiveness upward. Furthermore, the distribution of

high-frequency returns remains relatively stable, underscoring the importance of time-series dynamics over

alterations in static return properties.

The predictive power of changes in short interest ratios is somewhat controversial, particularly regarding

subsequent negative returns (see, e.g., Boehmer et al. (2010)). However, in this paper, changes in short in-

terest ratios prove to be a reliable predictor of subsequent explosive episodes, highlighting the informational

content embedded in announcements about market fundamentals beyond firm-specific information.

Other Literature. Market phenomena like overreaction (Jegadeesh and Titman (1993), Lehmann

(1990)), underreaction (Daniel et al. (1998), Barberis et al. (1998)), momentum (Jegadeesh and Titman

(1995)), and reversal (Pelger (2020)) are well-documented and widely acknowledged in both market indices

and individual assets. While these market phenomena typically entail particular types of time-series dynam-

ics in prices, empirical studies often adopt a narrow approach, primarily focusing on alpha, which represents

the excess return over a suitable risk-adjustment benchmark. This paper contributes by uncovering specific

transitional dynamics underlying these phenomena.

In particular, the paper reveals that short-term reversal is more closely associated with explosive episodes

rather than high-frequency jumps. Explosive episodes can be linked to under- and overreaction, although the

empirical evidence suggests that these explosions are less likely to follow earnings announcements, which

are a primary focus in the existing literature. This finding implies the presence of different mechanisms at

play in explaining explosive price dynamics.

The paper is also related to developing literature on demand system asset pricing (e.g., Koijen and Yogo

(2019), Koijen and Yogo (2020), Gabaix and Koijen (2021)) and older literature on fund flows (e.g., Lou

(2012), Vayanos and Woolley (2013)) that emphasize on the role of inelasticity and impact of institutional

trades for price formations. Though this literature targets modeling aggregate and longer-lasting fluctuations,

while my paper generally has more micro focus, the paper’s mechanism significantly relies on traders’

knowledge of the presence of those significant persistent flows. Moreover, explosiveness can be used as an

additional tool on top of the standardly considered returns for studying demand systems.

The remainder of the paper is organized as follows. Section 2 briefly describes the data, cleaning proce-

dures, and notations used for the paper. Section 3 provides definitions and the method for detecting explosive

episodes. It also presents a particular case study of using it. Section 4 describes explosiveness in the context

of aggregate market fluctuations. Section 5 characterizes individual stock explosive episodes. It examines

analyzes partial reversal, studies links to buying pressure and trading volume, describes their contribution

to the idiosyncratic variance of stocks, and links explosiveness to firm characteristics. Section 6 discusses
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explosiveness around short-squeeze events, suggesting the underlying mechanism. Section 7 presents the

model generating explosions based on the expected inelastic demand assumption. Section 8 introduces in-

siders into the model, generating explosive price-discovery processes with partial reversal. Section 9 tests

the model’s prediction around the short interest dissemination dates. Section 10 provides a robustness check

employing Monte Carlo simulations. Section 11 concludes.

2 Data and Variables

This section covers the data sources and key variables. Across the empirical sections of the paper, s subscript

stands for a particular stock or a portfolio of stocks, i stands for industry, d stands for a day or the first day of

the considered period, and t for a specific (high-frequency) moment in time. The td,0u and td, tu subscripts

stand for the first and t ` 1-th observation in the given time period that starts in the morning of day d.

TAQ

The primary source of the high-frequency data is the New York Stock Exchange Trade and Quotes (TAQ)

which covers all trading dates from 2003-09-10 to 2022-12-31. I access quotes data via Wharton Research

Data Services (WRDS). The cleaning procedure that I use is highly adapted to the needs of building reliable

explosiveness measures. It is described in the Appendix Section A1. The stock that did not have clean prices

within the window of interest was excluded from further analysis both for the estimation of explosiveness

and building high-frequency factor portfolios.

The high-frequency factor portfolios are constructed daily over the window of interest to match indi-

vidual stock price paths. The weight assignment and assignment to a portfolio happens yearly or monthly

according to standard portfolio sorting procedures (e.g., Fama and French (2015)). Using factor portfolios,

I calculate high-frequency factor returns from the beginning of every trading date. The high-frequency fac-

tor exposures of individual stocks were derived from rolling 50-day window regression based on intraday

returns only. The log-price fluctuations are adjusted by high-frequency factors according to estimated betas.

Finally, I utilize the Millisecond Trade and Quote product by WRDS to obtain measures on buying and

selling pressure, trading volume, and other liquidity indicators.

CRSP

The daily stock data, such as returns, prices, share outstanding, industry identifiers, and trading volume

are obtained from the Center for Research on Security Prices (CRSP). The daily data is used to verify high-

frequency TAQ data and make adjustments for overnight stock splits and distributions. Using the daily factor
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returns reported on Keneth French’s website, I calculate daily factor exposures, idiosyncratic volatility, and

daily jump measure in line with Kapadia and Zekhnini (2019).

Compustat, I/B/E/S, Thomson Reuters (13F)

The quarterly accounting data from Compustat is used to classify stocks into high-frequency factor

portfolios and to control for firm characteristics in our empirical analysis. I use I/B/E/S to identify earning

announcement dates and surprises. The quarterly institutional holdings are built based on the s12 file of

Thomson Reuters (13F). The short interest data with bimonthly FINRA releases is taken from Compustat

and discussed in Section 9.

3 Explosiveness

This section discusses the detection of explosive episodes in stock price data. Our goal is to identify tempo-

rary periods of observations with a particular pattern in the data, where (1) previous prices appear to predict

subsequent returns positively, and (2) there is evidence of acceleration in the underlying dynamics. I start

by discussing the definition of the objects suitable for detection and formally targeted by the test. Then,

I provide an example of a data generating process that may appear identical to the theoretical explosion

ex-post but is not inherently explosive, emphasizing that this paper’s application is focused on the ex-post

classification of transitional dynamics. Afterward, we will discuss the empirical identification of explosive

episodes based on high-frequency data and provide a case study to illustrate the detection process.

3.1 Definition for empirical test

Consider a time series of stock prices Ps,t , t “ t0, . . . ,T , defined by some data generating process (DGP), such

that plogPs,t0 , . . . , logPs,T q is an element of L2 space in some probability space pΩ,F ,Pq, with a filtration

F‚ “ pFt Ď F : t P T q, T “ t0 ´ 1, . . . ,T . Define {∆ logPs,t as the projection of stock log-return ∆ logPs,t “

logp Ps,t
Ps,t´1

q into the space spanned by k previous returns and a constant, t1,∆ logPs,t´1,∆ logPs,t´2, . . . ,∆ logPs,t´ku.

Then, call a period rt0,T s an explosive episode for a stock s if there exists t̄ P pt0,T q such that the residual

of projection is positively correlated to the previously observed log-price, logPs,t´1:

covt0´1

´

logPs,t´1,∆ logPs,t ´ {∆ logPs,t

¯

ą 0, t “ t0 ` k ` 1, . . . t̄.

If the realized return over the explosive episode, logPs,t̄ ´ logPs,t0 , is positive (negative), then I call

it the explosion up (down). Note that the up/down classification is not a characterization of DGP but
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rather an ex-post attribute of observed data points. Explosiveness refers to a specific case in which a non-

stationary episode of returns occurs, where a previous high (low) stock price predicts future price movements

in the same direction, even when controlling for return autocorrelation. Importantly, explosiveness does not

impose restrictions on the subsequent behavior of stocks when the positive covariance ends. This allows

explosiveness to represent both transitional dynamics leading to new prices and dynamics with subsequent

reversals.

The simplest example of explosiveness is when the stock price Ps,t obeys4

∆ logPs,t “ α ` ct̄ logPs,t´1 `
k

ÿ

i“ j

φ j∆ logPs,t´ j ` εs,t , t P tt0, . . . , t̄u, (1)

where ct̄ ą 0 and ε-s are uncorrelated and zero-mean error terms for some lag order k and lag parameters

tφ juk
j“1. Here, explosion is a time series property that violates autoregressive model ARpkq for the stock re-

turns. For example, assuming no autocorrelation in (1), i.e., φ j ” 0, explosion implies expected exponential

change of price in time:

Et0rlogPs,ts “ ´αc´1 ` p1 ` cqt´t0
`

logPs,t0 ` αc´1˘

If c logPs,t0 ą α , ex-post it is more likely to expect explosion up. If c logPs,t0 ă α then explosion down

is more likely to be observed.

3.2 Alternative DGP ex-post explosive

With the object defined above, it is important to understand that the realized data might exhibit an alternative

data generating process that appears identical in hindsight to the observer. Consider the example of the DGP,

∆ logPs,t “

$

’

’

’

’

’

&

’

’

’

’

’

%

c logPs,t´1 ` εs,t , t ă τ̃,

´c logPs,t´1 ` εs,t , t “ τ̃

εs,t , t ą τ̃

t “ t0, . . . ,T (2)

where τ̃ represents a stopping time, which is a measurable random variable within the probability space

pΩ,F ,Pq. Its support is given by supppτ̃q “ t0, . . . ,T , and it satisfies the property τ ď t P Ft for all t P T .5

Additionally, it is specified that the conditional probability of τ̃ being equal to t 1 ` 1 given that τ̃ ą t 1 is the

same as the probability of τ̃ being greater than t 1 ` 1 given that τ̃ ą t 1, and both are equal to 0.5.

Prpτ̃ “ t 1 ` 1|τ̃ ą t 1q “ Prpτ̃ ą t 1 ` 1|τ̃ “ xt 1q “ 0.5
4Here, assume no dividends and stock splits over the period.
5This property ensures that the event of τ being less than or equal to a specific time t is measurable with respect to the sigma-

algebra Ft .
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In other words, before the stopping time, at each time t, there is an equal probability that the next period

will either be the stopping period (where prices reverse on average) or continue its growing path. It is trivial

to show that at every point in time, ∆ logPs,t is a martingale by construction:

Er∆ logPs,t`1|Fts “ 0,

and the true data generating process is not explosive:

covt1

´

∆ logPs,t`1,Ps,t

¯

“ 0. t 1 ă t

Nevertheless, ex-post observations for the processes must be indistinguishable from the explosive pro-

cess with some unknown t̄ and

∆ logPs,t “

$

’

&

’

%

c logPs,t´1 ` εs,t , t ă t̄,

εs,t , t ą t̄
t “ t0, . . . ,T. (3)

Hence, a detection mechanism aimed at capturing explosions might also capture processes with similar

characteristics that are not necessarily martingale violators. The provided example emphasizes that the

empirical detection mechanism used throughout this paper is designed to identify episodes with prices ex-

hibiting a stochastic version of convexity. It does not claim to identify actual martingale violations but

instead, episodes when realized prices exhibit characteristics similar to unit-root violations.

3.3 Empirical identification

To capture explosiveness in individual stocks and stock portfolios, it is necessary to identify time-series

episodes where the covariance is positive. To accomplish this, I adapt a rolling window procedure from

Phillips, Wu, and Yu (2011), abbreviated as PWY (2011), applied to rolling windows ranging from 5 days

to monthly intervals of high-frequency stock price observations. Effectively, that employs a double rolling

procedure. This method is well-suited for dealing with the temporary nature of explosive episodes. It

remains robust even when the positive covariance disappears and subsequent reversals occur in the data.

The procedure is described below.

The objective is to construct a daily explosiveness measure, denoted as pl, f
d,s, based on TAQ high-

frequency data for each stock s. The variable d stands for the first day of the considered period, l takes

values from the set {5 days, 10 days, 20 days}, representing the length of the period over which explosive

episodes are identified. The variable f indicates the frequency at which TAQ-based high-frequency prices
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are utilized. The analysis is restricted to business days and trading hours, starting from 9:40 AM6. For ex-

ample, if f is set to 5 minutes7 and l is set to 10 days, this would result in a total of 770 observations within

that specified period. Subsequently, a set of regressions is estimated:

∆ logPs,t “ α ` cT 1 logPs,t´1 `
k

ÿ

i“ j

φ j∆ logPs,t´ j ` εs,t , t P tt0, . . . ,T 1u. (4)

for T 1 P rT0,T s and pre-selected lag order k, collecting t-statistics on cT 1 , known as Augmented-Dickey

Fuller statistics, ADF 1
T . After collecting them, I identify supremum-ADF statistic, as the maximum of the

set,

SADF l, f
d,s “ supT 1ADFT 1 .

As shown in PWY (2011) under mild conditions, if the null hypothesis is true, i.e., stock returns follow

an autoregression process:

∆ logPs,t “ α `
k

ÿ

i“ j

φ j∆ logPs,t´ j ` εs,t , t P tt0, . . . ,T u, (5)

the estimated measure has the following asymptotic invariant distribution:

DpSADFqr0 „ sup
rPrr0,1s

$

’

&

’

%

1
2 r

“

W prq2 ´ r
‰

´
şr

0W psqdsW prq

r1{2
!

r
şr

0W psq2ds ´
“şr

0W psqds
‰2

)1{2

,

/

.

/

-

. (6)

The right-tail quantiles of the distribution can be used as critical values for testing. For example, critical

values at α “1%, 5%, 10% for r0 “ 0.2 are 1.997, 1.421, and 1.125, respectively. These values are derived

from 100,000 Monte-Carlo simulations.8 Since the distribution in the finite sample can be affected by the

lower frequency of price observations and by the fat tails of the observed stock returns, I provide a battery

of Monte-Carlo simulations to identify the accuracy of the test in the environment of high-frequency stock

data in Section 10.

From the perspective of a market participant who runs the rolling ADF procedure in real-time, the first

instance rT 1 at which ADF
rT 1 exceeds a given critical value CVα can be considered as the detection of an

explosion:

DE l, f ,α
d,s “ arg inf

rT 1

´

T 1 : ADFT 1 ě CVα

¯

. (7)

6Note that the actual trading hours are from 9:30 AM to 4:00 PM, but we observe larger spreads and extra volatility in the

mid-quote prices during the first minutes of a trading day (see e.g. Lee and Mykland (2012)) , which could potentially disrupt the

results.
7The 5-minute frequency is the most common in volatility forecasting.
8I simulate the standard Brownian motions with 100,000 steps over a unit interval.
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One possible definition of the end of an explosion is the first moment afterward when ADFT 1 falls below

the critical value:

EE l, f ,α
d,s “ arg inf

rT 1

´

T 1 ą DE l, f ,α
d,s : ADFT 1 ă CVα

¯

. (8)

If an explosion is detected, its length can be calculated as

LE l, f ,α
d,s “ EE l, f ,α

d,s ´ DE l, f ,α
d,s . (9)

In practice, when dealing with individual stocks, this definition will likely underestimate the length of

an episode that a researcher might want to analyze as an explosion. This is because the volatility of returns

can lead to multiple crossings of the critical value level by ADF
rT 1 .

The previous literature that utilized the SADF test primarily focused on accurately classifying specific

episodes, often spanning several years and labeled as ’bubbles.’ In these cases, researchers commonly

employed model selection criteria to determine the optimal number of lags. However, it is worth noting that

the inclusion of these selection criteria significantly increases the computational cost of SADF, providing

only marginal improvements in classifying periods as either explosions or not. Therefore, in this paper, I

predominantly rely on classification based on a fixed lag order9 or BIC-selected lag order from zero to four

lags. The details will be discussed in Section 5.

3.4 A Case Study of Lumen: detection of explosiveness, January 2021

Let us show how the testing procedure detects an explosion for Lumen stock in January 2021. Figure 3 shows

the price dynamics of Lumen stock over a 10-business-day interval, starting in the morning of January 20,

2021. The time series consists of seven hundred and seventy observations that come with 5-minute frequency

over the trading hours.10 To tag the stock as an explosive, we do the following. First, we set the minimum

window size r0 “ 0.2 and lag-order parameter k “ 2 to estimate (1) ADFT 1 starting from T 1 “ r0 ˆ400 “ 80.

The maximum ADF is achieved when T 1 “ 377 that I record as the time of explosion, which corresponds to

observation on January 26, 2021, at 3:20 pm. ADFT 1 “ 6.58. Comparing the value with simulated critical

values from (6), I conclude that the null can be rejected almost certainly since p-value for SADF “ 6.58 is

zero11. Looking at the size of the estimated coefficient, cT 1 “ 0.083, and the initial log price, one can assess

how much drift in the price of the stock changed within the explosive episode: c ˆ p2.8 ´ 2.4q. Assuming

9Throughout the paper, I primarily utilize k “ 1 as the most conservative version, accounting for the first-order auto-covariance

term. Relaxing the value of k typically leads to an increase in the detection rate, but it also appears to introduce more noise into the

estimation.
10That is seventy-seven observations per day, that excludes 9:30 and 9:35 timestamps
11Since I do only a finite number of simulations, N “ 100,000, I actually do not get simulations with higher values.
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that over the initial interval the drift in the log price was close to zero, the movement of the prices shifted

the drift to the level of around 3% per 10 minute, which is abnormally high for individual stocks and barely

matches any risk-based explanation.

In the specific case of the Lumen stock explosion, the price experienced an almost complete reversal,

returning to values around 2.45. Despite the stock still showing substantial appreciation during this period,

roughly around 5%, this appreciation is significantly smaller when compared to the 40% peak it reached.

It is important to note that the moment of explosion detection, denoted as DE10,5,5%
Jan 20,LUMN and illustrated by

a blue dashed line, occurred just 30 minutes before reaching the peak, which may seem visually late for

this particular case. However, this delay can be attributed to the highly volatile and reversal-prone nature

of stocks, making it challenging to obtain a high ADF. At this moment, the stock has appreciated by 7%

since the beginning of the interval. Further, 46 periods later, at 12:20 on the following day, the end of the

explosion is defined according to (9).

It is essential to emphasize that relying on right-tail ADF testing over the observed period to detect

the anomaly, as observed here, would lead to failure. This is because the ADF t-statistic of -1.57 does

not indicate any explosiveness (with a p-value of the test being 0.504). This phenomenon, observed from

a market perspective, is relatively short-lived yet carries significant implications for a broad spectrum of

investors, contributing substantially to overall market volatility. Moreover, the atypical stock dynamics pose

difficulties in smoothly fitting into a standard jump-diffusion framework, even with the incorporation of

stochastic volatility instruments. This paper aims to address the central question of whether such unorthodox

stock price dynamics are a common occurrence, and whether it resembles the temporary price deviation seen

in the case of Lumen or result in more persistent changes.

3.5 Basic Descriptives

I apply a similar procedure to the one discussed for Lumen stock for every stock on a daily basis. The

collected p-values are summarized in the empirical probability distribution function (PDF) shown in Figure

5. The red dash-dotted line corresponds to the theoretical PDF of p-values under the null hypothesis. The

heavy tails of the empirical PDF around the edges indicate that the null hypothesis must be rejected for a

substantial portion of our observations. The right tail, with p-values close to one, suggests that the data reg-

ularly experiences a strong reversal that cannot be accounted for by autocorrelation lags in (4). Specifically,

when stock prices reach high values, they systematically bounce back. As I demonstrate in the appendix,

this effect is more pronounced when one does not consider the autocorrelation of returns by setting the lag

order, denoted as k, to be small.
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Figure 3: Explosion of Lumen Stock

The primary focus of this paper lies in examining the left tail, particularly when the p-value is small.

Approximately 6.2% of observations are identified as explosive at the 1% significance level. The vertical red

lines aid in assessing the proportion of observations that would be classified as explosive using the standard

1%, 5%, and 10% significance levels. Integrating over the density to the left of these cutoff levels yields

percentages of 11% and 15% for the latter two levels. It is worth noting that the exact figures are dependent

on the specifications chosen, including the lag order and the value of r0, which can impact the final test

results. However, as demonstrated in the appendix, the observation that explosive episodes are significantly

more common than predicted by the null hypothesis remains robust.

It is important to note that the frequency of explosiveness detections within a given 10-day interval does

not directly correspond to the number of explosive events when considering a longer timeframe. To illustrate,

in simulated martingale data with 100,000 observations, only 0.4% of days feature a peak of an explosion

under a 1% significance level. However, randomly selected intervals are detected as explosive with close to a

1% probability because the intervals often overlap and share the same peak of explosions. In our actual data,

when analyzing explosiveness detections, we found that 6.2% of these detections actually result in 2.4%

separate events when overlap is taken into account. To address this issue, when constructing summaries and

22



analyzing explosive episodes, we primarily work with explosive events by removing overlapping periods to

avoid double counting.

As the definition of explosive episodes is based on the convexity of price movements rather than their

direction, I categorize explosiveness into two distinct groups for events detected at a significance level of

at least 10%. One group relates to upward explosiveness, while the other pertains to downward explosive-

ness.12 To illustrate the accuracy of this classification, I plot the distribution of returns conditional on the

detection of explosiveness in Figure 4. The return is measured from the starting point of estimation to the

moment of explosion detection. As we can see, the distribution is bimodal, with almost no mass around zero

return. Explosions up feature a fatter tail, though the total mass of explosiveness down is slightly higher.

Av.Ret = −10.01%Av.Ret = −10.01%Av.Ret = −10.01% Av.Ret = 11.45%Av.Ret = 11.45%Av.Ret = 11.45%
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Figure 4: Return distribution

The difference between the two directions of explosions is represented by the varying colors of the

EPDF in Figure 5. The density in the explosive region is divided into red and blue segments, representing

explosiveness episodes classified as up and down, respectively. Although the occurrence of downward

explosiveness is slightly more frequent than upward explosiveness for individual stocks, it is important to

note that explosive bursts and booms, in general, occur much more frequently than what a null hypothesis

would predict. This null hypothesis would anticipate roughly an equal distribution of these events, with

approximately 0.5% of cases being explosive up or down at a 1% significance level.

12The classification is akin to the previously studied split into downward/upward variance/jumps decomposition (e.g., Barndorff-

Nielsen et al. (2008), Kilic and Shaliastovich (2019)).
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ST Returns

Expl N obs. r̄t,t`l rExpl Max Min s.d. Skew Kurt

No 18527676 0.27 3.09 -2.97 0.37 0.15 37.80

Up 1140362 12.57 16.18 4.51 -3.08 0.44 1.71 52.69

Down 1250688 -10.02 -12.50 3.20 -4.40 0.44 -1.44 53.08

Table 1: Return characteristics in explosion window

The first two columns display the average percentage return over a 10-day period and the return at the point of explosion. The

remaining columns provide information on extreme short-term (5-minute or overnight) returns and the statistical moments (stan-

dard deviation, skewness, kurtosis) of their distribution. The initial row represents non-explosive episodes, determined at a 5%

significance level.

The raw properties of return over all observations with clean data in the randomly chosen period of

explosion at 5% significance level are summarized in Table 1. On average, the explosive periods are associ-

ated with the price shifts in certain direction. Stocks are more volatile and have higher extreme return values

when explosions are detected. In section 5 we will do further refinement.

3.6 Short Discussion

Before delving further into the analysis, it is essential to discuss the pros and cons of the detection mecha-

nism employed in this study. The way we have formulated the phenomenon of persistent accelerated returns

allows for various methods to detect it. However, any standardized method for uncovering such phenomena

will inherently come with a false detection rate, both empirical and conceptual.

The empirical false detection rate arises because any statistical test has imperfect power, meaning that it

might not correctly identify every true episode of the phenomenon, leading to both false positives and false

negatives. That can be overcome by using the large data sample and considering the false detection as an

additional noise to our measure.

The conceptual false detection rate is related to the idea that identified episodes may not perfectly fit

the true desired dynamics. In finite samples, numerous different processes can produce similar realizations

in data, as demonstrated in our previous example. Additionally, in simulations, explosiveness might resem-

ble high autocorrelation. This is because when allowing autocorrelation to change, processes can become

mathematically indistinguishable even though they carry slightly different economic meanings. Distinguish-

ing between these cases for a specific situation can be as challenging as distinguishing between jumps and
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Figure 5: Empirical probability distribution function of p-values of explosiveness

volatility with only a few data points. These challenges are akin to issues of weak identification in econo-

metrics, where it is either impossible or requires more sophisticated techniques to separate the null and

alternative models (e.g., Staiger and Stock (1997), Stock and Wright (2000), Mikusheva (2012)).

With these considerations in mind, the chosen detection procedure needed to satisfy several criteria.

First and foremost, it had to possess economic meaning and capture episodes that met the required proper-

ties: specifically, accelerating returns. Visual testing and summaries based on aggregations, which will be

discussed later, indicated that this procedure aligns with these needs. Second, it had to be implementable on

a large scale, considering the vast universe of U.S. stocks with high-frequency data. The computational de-

mands of aggregating statistics more complex than simple averages and second moments can be prohibitive.

In this paper, we deal with over 22 million observation periods over which we identify explosiveness. The

SADF procedure, initiated on a daily basis, strikes a reasonable balance between complexity and compu-

tational feasibility.13 Third, the chosen procedure had to be capable of accommodating bursts of explosive

13For context, computing SADF estimates for a specification with a 10-day length and 5-minute frequency takes around a month

using standard efficient packages with regressions. However, I have optimized the process writing efficient c++ code to get the

estimates within a 7-10 day period using a modern 16-core computer.
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episodes and had to run frequently enough to capture the phenomenon effectively. The SADF test is de-

signed specifically to meet these criteria. By employing SADF and rolling its starting point, I aimed to

capture the majority of explosive episodes that are not too short-lived. Fourth, it had to provide a clear and

testable prediction under mild assumptions, enabling model-free classification of explosiveness in line with

theoretical foundations. SADF-based measure does fit the condition since it is effectively a p-value of the

test requiring minimum assumptions on the distributions of returns.

The SADF test, while effective for detecting explosiveness in stock prices, does have its limitations.

Complex price dynamics, where prices temporarily jump up and down, can pose challenges for the test, po-

tentially leading to false negatives when the economic meaning of the episode is an explosion. For instance,

even in a case like GameStop (GME) squeeze, which could serve as a textbook example of explosiveness, the

SADF test might not capture it at the most stringent significance level due to multiple jumps and fluctuations

that reduce the SADF measure’s power.

Alternative detection mechanisms could involve refinements using machine learning techniques or more

advanced versions of ADF-based measures (e.g., Phillips et al. (2015b), Phillips et al. (2015a)). These

methods might offer more precise results for particular episodes, but they often come with increased com-

putational demands. It is worth emphasizing that the primary goal of this paper is not to accurately classify

each and every explosion among the more than 20 million data periods. Instead, the focus is on captur-

ing a more general phenomenon, identifying its prevalence beyond what could be attributed to noise, and

exploring its relationship with other stock characteristics and liquidity measures.

4 Market Explosiveness

To isolate the unique explosiveness of individual stocks amidst the broader fluctuations in the market, it is

crucial to first study explosiveness of the factors driving the common stock market variance structure. In this

section, I will assess the explosiveness of the standard long portfolios commonly used in existing literature

to construct factors. I will also draw connections between this portfolios’ explosiveness and other return

metrics while examining its relevance to the broader market’s explosiveness.

In their study, PSY (2011) scrutinized the explosiveness of the market measured by S&P 500 index as

a long-term phenomenon in order to empirically identify bubbles. In contrast, analysis of this paper closely

examines high-frequency data.

Following the procedures outlined by Fama-French, I create 24 portfolios and a market portfolio using
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a value-weighted approach that encompasses common shares traded on the NYSE, NASDAQ, or AMEQ.14

These 24 portfolios result from a combination of four 2x3 portfolios categorized by size and firm character-

istics such as Book-to-Market, Investment, Operating Profitability, and Momentum (prior 12-to-2 return).

Therefore, I consider portfolios central to Fama-French’s five factors, including the momentum factor. Uti-

lizing data matching between TAQ and CRSP datasets, I calculate values at a 5-minute frequency for each

portfolio over specific intervals and estimate the explosiveness of the logarithmic values. The observations

from September 2003 to December 2022 form 4,853 overlapping ten-day intervals under study.

The market portfolio occasionally exhibits explosive characteristics, although these instances are less

frequent than for individual stocks. Figure 7 illustrates the empirical cumulative distribution function of

intervals with a specific p-value of explosiveness. Each column in the plot represents the probability of

an interval being detected as explosive at a given significance level, ranging from 0.01 to 0.05 with a 1%

increment. As before, the columns are divided into red and blue segments, representing explosiveness

episodes classified as up and down, respectively.

On average, we observe more explosive episodes than one would anticipate if the market returns were

following an autoregression process. Despite approximately 60% of the ten-day periods showing a positive

cumulative return, only .54%, 1.07%, 1.63%, and 2.91% of the observations can be classified as experienc-

ing explosive upward movements at the 1%, 2.5%, 5%, and 10% significance levels, respectively. These

percentages are notably lower than one would expect under the hypothesis of autoregression, which sug-

gests a stronger market reversal as the market consistently rises. However, it is not uncommon for markets

to exhibit sudden declines with explosive characteristics, leading to measured explosiveness probabilities of

3.48%, 5.09%, 6.86%, and 9.99% at the same significance levels.

As discussed in Subsection 3.5, it is important to note that the frequency of detection is not equivalent

to the number of occasions when explosive episodes can be detected. Specifically, explosive episodes were

detected on 176 days at the 5% significance level, with 89 of these days featuring detection at the 1%

significance level. Out of the last 89 days, 7215 can be attributed to explosions down, while the remaining

17 are associated with explosions up.

Similarly, the other core portfolios exhibit more pronounced downward explosiveness when compared

to their upward movements. The summary for the 24 portfolios is captured by the left-tail of the empiri-

cal cumulative distribution function of their p-values in Figure 7. The rejection of the non-explosive null

14For additional portfolio details, please refer to the Appendix.
15Out of the 176 detected explosion dates at the 5% significance level 132 (44) are explosive down (up). Out of the 135 detected

explosion dates at 2.5% significance level 105 (30) are explosive down (up).
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hypothesis occurs more frequently than expected when considering an autoregressive model for portfolio

returns. This phenomenon is primarily driven by downward explosions, which are highly concentrated on

certain days. To illustrate, out of 116,472 portfolio-day observations, 8,654 (7.43%) are identified as down-

ward explosions, while 2,897 (2.49%) are labeled as upward explosions at 5% significance level.16 If we

focus on identifying days when at least 20 (or 16) out of the 24 portfolios exhibit explosiveness, we find

that these days account for 2,797 (or 4,073) observations in the case of downward explosions and 371 (or

673) observations in the case of upward explosions. This demonstrates a significant clustering of downward

explosions within the portfolios, possibly reflecting common downshifts in the market.

The distribution properties of the returns are presented in Table 4. When compared to individual stocks,

explosiveness can be achieved with relatively modest returns of 3.44% upward and -5.06% downward. How-

ever, it is important to note that within a 10-day interval period, these returns are considered substantial.

Furthermore, the overall return during these periods is typically significant, indicating that portfolio explo-

sions often have a transitional nature. Though, it partially reverse on average within the estimation window

since |r̄t,t`l| ă |r̄Expl|. Overall, there is no big difference between the returns in terms of second and fourth

moments for explosive episodes of the portfolios. The upward movements are slightly less volatile while

downward movements are more volatile. However, the bias toward larger positive (negative) returns during

upward (downward) explosions is reflected in the higher (lower) average returns and skewness values.

Lastly, it is important to note that explosiveness is not uniformly distributed across all 24 portfolios.

Portfolios composed of small stocks are more likely to be detected as explosive, particularly in the context

of explosive downturns. Additionally, portfolios characterized by high 12-to-2 returns and a high book-to-

market ratio exhibit a notably higher propensity for explosiveness. This does not necessarily imply that the

individual stock constituents within these portfolios are also explosive, but it does suggest the importance

of controlling for market fluctuations in these dimensions when estimating stock explosiveness.

4.1 Risk-adjusted explosions

Since explosiveness can also be observed in the fluctuations of market portfolios, it is essential to disentangle

the phenomenon and determine if the explosions in individual stocks are solely driven by them. To address

this concern, I estimate the explosion of individual stocks based on risk-adjusted prices. Specifically, to

16Out of 116,472 portfolio-day observations, 4,011 (3.44%) are identified as downward explosions, while 978 (0.84%) are labeled

as upward explosions at 1% significance level.
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Figure 6: Empirical probability distribution function of p-values of market explosiveness

The plot illustrates the empirical probability distribution function of SADF p-values, which were estimated using the market

portfolio data over ten-day intervals spanning from September 2003 to December 2022. The sample consists of 4,853 ten-day

intervals, and the intraday data is timestamped at five-minute intervals. The parameters used for the estimations are set at k “ 1

for the lag order and r “ 0.2, indicating a pre-estimation period of two days. For alternative parameter settings, please refer to the

appendix.

isolate idiosyncratic fluctuations, I estimate the explosion based on the price:

PAd j
s,t “

Ps,t

1 ` Ad js,t
.

Here, Ad js,t , represents the systematic return in the stock according to one of three models: JM (just market),

CAPM, or FF3 (Fama-French 3 factors). The systematic return is defined based on realized factors over the

same periods and pre-estimated risk exposures17 to the factors of the individual stocks. For example,

Ad jFF3
s,t “ β Mkt,d

s,t Mkts,t ` β SMB,d
s,t SMBs,t ` β HML,d

s,t HMLs,t ,

where HMLs,t , SMBs,t , Mkts,t represent returns over the respective portfolios if invested at time t “ 0. The

JM specification ignores the estimated factor exposures and assigns a value of 1 to the market beta while

setting all other risk exposures to zero.

17The risk exposures are estimated based on high-frequency data as well, see Appendix for details.
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Figure 7: Empirical cumulative distribution functions of p-values for FF-portfolios

The plot illustrates the empirical cumulative distribution function of SADF p-values, estimated using 24 long portfolios underlying

SMB, HML, RMW, CMA, and UMD long-short factors. The estimate produced over 4,853 ten-day intervals from September 2003

to December 2022. The intraday data is timestamped at five-minute frequency. The parameters used for the estimations are set at

k “ 1 for the lag order and r “ 0.2, indicating a pre-estimation period of two days.

Table 5 presents the frequency of breaking through the critical values at 1%, 2.5%, 5%, and 10% sig-

nificance levels for each of the specifications. It can be observed that the frequency of explosion detection

slightly decreases, moving from 6.2% to values around 5.6% at the 1% significance level. While this may

be partly due to the introduction of some noise into individual stock returns, it is noteworthy that the adjust-

ment primarily affects explosion down, whereas explosion up remains largely unaffected. This observation

aligns with our previous findings that the market as a whole tends to exhibit explosiveness in the downward

direction, while there are fewer instances in the upward direction.

The estimated explosions, under various adjustment methods, demonstrate a reasonable level of stability.

The conditional probability of detecting an explosion according to one specification relative to another, at the

1% significance level, ranges from 0.64 to 0.82. Lower probabilities of overlapped detection are observed

when a no adjustment specification is considered, while larger probabilities are evident when comparing two

models with some adjustments. These probabilities increase when we relax the significance level to 5%. For

further details, refer to Table 6.
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The subsequent findings in the paper about individual stocks maintain their robustness even when we

eliminate the effects of systematic risk fluctuations by applying the adjustment method as described in the

section. Nevertheless, the specification without adjustments serves as the one that will be mainly used in the

paper due to its ease of interpretation and its adherence to the conventional approach found in the literature

that analyzes high-frequency stock prices.

4.2 Association of Explosive Episodes in the Market and Individual Stocks

Let us explore the relationship between the detection of explosiveness in individual stocks and the market

portfolio. Table 8 provides a summary of this relationship. First, without any adjustment, the detection of

explosiveness upward at the 1% significance level increases slightly by seven basis points. The detection of

explosiveness even decreases at the 5% and 10% levels. In contrast, when the market is explosive, 8.84%

of stocks exhibit explosiveness downward. This proportion increases as the significance level for detecting

individual stock explosiveness becomes more relaxed. However, for the sample with no market explosion,

the probabilities of upward and downward explosions in individual stocks are almost identical, with both

being around 2.83%˘ 0.01%.

However, if we classify market explosions into "up" and "down" groups, the corresponding up and

down individual stock explosions increase. This can be observed in the second and fourth sections of Table

8. Therefore, it appears that individual stock explosions are procyclical. Explosions in the market, whether

up or down, tend to predict both upward and downward explosions in individual stocks. However, due to

the rarity of these market events, especially explosions, it would be inaccurate to claim that they are the sole

explanation for why individual stocks become explosive.

Sections 5 and 6 of Table 8 provide information on the percentage of dates when individual stock ex-

plosions are detected and whether they coincide with a market explosion on the same date. These statistics

reveal that only 5.32% of upward explosions in individual stocks occur on the same date as a market ex-

plosion, while 19.39% of downward explosions align with market explosions. This suggests that individual

stock explosions are primarily an idiosyncratic phenomenon, even though they exhibit some connection to

market fluctuations.

By introducing adjustments by the market or by standard factor adjustment to stock prices before SADF-

estimation, we might partly mitigate the driving force of the market behind explosive episodes. In the second

and fourth sections of Table 8, we observe that when the market is classified as explosively up, the detection

of individual stock explosiveness decreases from 7.50% to 3.58%, 3.21%, and 2.97% with respect to JM,

CAPM, and FF3 adjustments. Similarly, when the market is explosively down, the detection of individual
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stock explosiveness decreases from 10.41% to 3.94%, 3.90%, and 3.73% with respect to JM, CAPM, and

FF3 adjustments.

These adjustments, however, introduce some noise in the estimation, which can be seen when examining

the reaction of upward explosions to adjustments, as shown in the first section of the same table. Upward

explosions increase in response to each of the adjustments, particularly for the Just Market specification.

The main reason for this behavior is that by subtracting a downward explosive component from the price,

we effectively incorporate an explosive element in the opposite direction. Given the tradeoff between em-

ploying the most sophisticated adjustment scheme and introducing additional noise, this paper ultimately

considers the relatively simple CAPM and FF3 adjustments, which hopefully remove the majority of market

fluctuations. The JM specification, which exhibits the most extreme “poisoning” effect, will be excluded

from further analysis.

5 Characterization of explosiveness in stocks

Once we have established the prevalence of explosive behavior among individual stocks, the central ques-

tions that arise are what precedes and follows such behavior for these stocks. Can investors generate alpha

from these stocks, and what types of risks are associated with doing so?

To ensure that the subsequent analysis is not affected by discussions concerning low-priced stocks, I

implement additional filters by selecting only stocks with a price of at least $5 measured 30 days prior to

the explosive period. To avoid studying overlapping events, I apply a procedure18 that ensures a minimum

of 10 days’ difference between analyzed explosions for the same stock. This effectively reduces the number

of studied events but guarantees studying unique market episodes. A few additional procedures discussed in

the Appendix are incorporated to remove likely temporary jumps that would cause in extra reversal but are

most likely associated with the microstructure noise not removed at pre-cleaning steps. The results do not

change qualitatively if the filters are omitted.

Table 3 provides a summary of the distribution of total returns and high-frequency returns over three

periods: the 10 days before, during, and after the identified explosion events. Explosions are initially identi-

fied on the raw price data, but post-explosion analysis is conducted using Fama-French 5-factor adjustment.

Alternative combinations of estimation and adjustment are presented in the appendix.

18 Refer to the Appendix for additional details on the selection procedure. The total sample results in 14,201,205 firm-dates

when an explosion can be detected, assuming no other filters are applied (e.g., requirements for identified other measures such as

firm characteristics).
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The summary of 10-day intervals reveals a slight pre-trend for explosions up before adjustment, which is

completely removed by risk-adjustment. Post-explosion 10-day intervals show no evidence of abnormal re-

turns. However, during the ten-day window surrounding the explosion, a substantial change in the direction

of the explosion is observed. This change amounts to 7.54% for explosions up and -6.65% for explosions

down. The FF5 adjustments mitigate this effect, but the aggregate change remains economically signifi-

cant, with abnormal returns of 5.46% for explosions up and -4.68% for explosions down over the window

containing the explosion. This underscores that explosions are part of transitional dynamics related to price

discovery and play a role in creating persistent changes in prices.

Figure 8 depicts the average price dynamics of these stocks after the day when an explosion is detected,

with events centered around the detection time. The graph reveals that, conditional on finding oneself in the

midst of an explosion, the optimal strategy, on average, is to divest from the asset. Even selling at the bid

and later buying at the ask yields, on average, more than a 1% alpha, a statement that we will subject to

more rigorous testing later on. However, it is essential to note that this graph does not capture the associated

risks associated with this trading strategy.
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Figure 8: Average cumulative return on explosive stock

The average cumulative return on an investment in an explosive asset over the 5 days leading up to the explosive detection period

is shown in the graph. The green, red, and blue lines represent the total return when considering the ask, bid, or midquote price as

the asset’s value. This graph encompasses the 5 days before and 5 days after the explosive detection timestamp. The investment

happens 10 days prior the detection time.

It is worth mentioning that although the average explosion might, at first glance, resemble a price jump,
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the detection of explosions is not actually driven by jumps. To demonstrate this, let us examine the distri-

bution of returns immediately before detection. Table 7 summarizes the distribution of returns (rDE) just

before an explosion, grouped by the direction of the explosion. As we can observe, the average returns are

only a few times larger than the standard deviation of returns, which is not high for high-frequency returns

and significantly smaller than overnight returns.

Nevertheless, it is true that following an extreme return, the detection of an explosion is mathematically

more likely. This is because the rolling supremum-ADF measure is more likely to reach the threshold specif-

ically at the moment. This can be observed by analyzing the times of the day when explosions are usually

detected. Explosions are more concentrated at the market opening since this is when extreme (overnight)

returns are typically realized. Conditional on at least 5% (-5%) jump19 in the stock price, 16.6% (21.9%)

of the days happen to be identified as days with detected explosion upward (downward) at 5% significance

level20.

5.1 Alpha in buy-sell and sell-buy strategies

The open question remains whether anyone can actually generate alpha, accounting for market frictions

when they find themselves in an explosive episode. Figure 9 demonstrates that even after risk-adjustment,

performed using the Fama-French five-factor model, explosive episodes tend to exhibit partial reversals on

average, both for upward and downward explosions. The red and blue lines in the graph represent the

average bid and ask prices, respectively, converted into return terms. Notably, the fact that the blue (bid)

curve eventually rises above the red (ask) curve suggests the possibility of a profitable Sell-Buy strategy.

This finding stands in stark contrast to a similar picture based on high-frequency jumps in prices, where

some minor reversals might occur but cannot be profitably confirmed based on available bid and offer prices.

Table 9 presents the systematic risk exposures of the daily trading strategy involving investment in

explosive stocks, utilizing mid-quote prices.21 These portfolios are mandated to include a minimum of 10

19That means that the absolute value of the return over a 5 minute interval or the overnight return is greater than 5%. The summary

is based on stocks that cost at least $5 30-days before the date. Vice versa, only 8.6% and 9.0% of the detected explosions up and

down respectively experience the jump of the magnitude. See the Appendix, for alternative definitions (i.e., different thresholds) of

jumps.
20Here, the lag-order is selected by BIC criterium.
21I must mention that the provided daily portfolio adjustment is imperfect since it does a daily adjustment while investing into

different stocks happen intraday at the time specific for given stock. In the essence the portfolio is dynamic since it includes and

excludes stocks on rolling basis, so ideally one need to derive factor exposures of the dynamic portfolio and make the adjustment

accordingly. I did not have time to implement the procedure and plan to add it later.
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Figure 9: Around Explosions and Jumps with risk-adjustment

The explosive intervals are selected using a non-overlapping procedure. Additionally, the five-day intervals before and after the

explosive interval are chosen for the same stocks. For a stock to be considered, it must have reliable price data for a thirty-day

interval and an initial price of at least $5. Explosiveness is detected on FF3-adjusted prices at 5 minute frequency with k “ 1.

stocks.22. In comparison to portfolios based on explosive up stocks, portfolios comprising explosive down

stocks tend to be more susceptible to aggregate market movements. They exhibit a market beta closer to

one, larger SMB and momentum betas, and a higher r-square in the sample. Despite that they also generate

slightly higher alpha. As observed, although the strategies exhibit a procyclical nature, the risk-adjusted

alpha of the portfolios stands at 1% (1.3%) for short (long) position in the portfolio following upward

(downward) explosions.

To test the feasibility of this strategy, let us calculate returns while considering the spread. Table 10

illustrates that although the generated alpha is naturally lower for these strategies, it remains statistically

significant. For calculating returns, I use the actual bid and offer prices. A buy-sell strategy is employed

following an upward explosion, where we use the offer price as the numerator and the bid price as the

denominator. Conversely, a sell-buy strategy is used following a downward explosion, with the bid price as

the numerator and the offer price as the denominator. The strategies yield daily alphas of 0.6% and 0.9%.

22It is worth noting that the results become even more significant without this condition, although there is a room for debate on

whether it can truly be classified as a portfolio.
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5.2 Role of liquidity

The model mechanisms developed in Sections 7 and 8 hinge on the ultimate connection of explosive mech-

anisms with both expected and realized directional trading. The former will be discussed in Section 9. Now

let us focus on which realized liquidity changes accompany the explosive episodes. To underscore signif-

icance of the explosive transitional dynamics, I continue examining the dates with detected explosions and

jumps collectively, considering major liquidity measures such as trading volume around detected explosions,

buying pressure (order imbalance), and effective spread.

The daily liquidity measures are derived from data sourced from Intraday Indicators by WRDS. Daily

buying pressure is defined as the net order imbalance, representing the difference between the share of trade

volume assigned to buyer-initiated and seller-initiated trades. This classification is based on Lee and Ready’s

(1991) algorithm. Abnormal characteristics refer to the difference between the daily measure and the rolling

average of the characteristic from the previous 30 days, normalized by the average. The reported charac-

teristics represent the two-day average of these abnormal liquidity measures on the day of event detection

and the preceding date. Including the preceding date enhances accuracy, as explosions must be preceded

by buying pressure, often occurring at the beginning of the trading day. All variables are winsorized at the

2.5% level. To maintain consistency with the previous analysis, I concentrate on a subset of non-overlapping

explosive episodes to prevent double-counting similar events. However, the results of this section are even

more pronounced when considering all detected dates.

Figure 10 provides an unconditional summary of daily liquidity measures. For clarity, cases with rel-

atively few observations, such as explosions up with jumps down on the same day, are excluded (refer to

Table 11 for specific numbers, including rare cases). In the first panel, the figure shows that both explosion

and jump dates feature abnormal trading volumes. The latter increases by 65% and 69% for jumps up and

down, respectively, with no explosion. Trading volume for explosions grows more moderately, by 44.7%

and 35.6% for up and down explosions, respectively. The effect is even more pronounced when dealing with

the interaction of jumps and explosions, especially for upward movements. Explosive episodes featuring a

jump have a trading volume almost three times larger than the average trading volume in the previous 30

days. All deviations are greater than or close to one standard deviation of 48.2% of the abnormal trading

volume.

The next panel showcases abnormal buying pressure for the same groups. Despite abnormal trading vol-

ume for jump days, buying pressure is relatively small for both jumps up and down. This could be partially

attributed to the known noisy nature of directional classification (see, e.g., Chakrabarty et al. (2015)), but
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notably, abnormal buying pressure is strikingly different for explosive episodes. For explosions up with and

without jumps, it forms an economically meaningful 9.3% and 9.6% increase, around 70% of the standard

deviation in value (13.6%). The difference does not vary much based on whether jumps happen on the same

date. Explosiveness down is associated with negative buying pressure, indicating that most trades were clas-

sified as sales. The magnitude is smaller, especially for interaction with jumps down. This is an additional

argument pointing out that explosive down episodes are different by nature from explosions up.

Finally, the last panel emphasizes that the bid-ask spread typically widens for all these events, but the

growth is modest for explosive episodes compared to jumps. The column bars report abnormal bid-ask

spread23. Explosions up without jumps almost do not feature a significant increase in spread, opposite to

explosive down episodes that feature a 12.8% increase in abnormal effective spread.

The documented summaries cannot be explained solely by other firm characteristics. Table 12 reports

the coefficients of two-way fixed-effect regression using the same liquidity measures as dependent variables

and the indicators of the events as the primary explanatory variable. The fixed effects include firm and date.

Additional firm-characteristics controls are reported in separate specifications. These controls include size,

book-to-market, turnover, momentum, and other characteristics discussed in the table’s footnote. After con-

trolling for all the confounding factors, the coefficients confirm the discussed summaries in approximately

the same magnitudes: detected explosion up (down) that do not feature jumps are associated with an 8.2%

(-5.6%) change in abnormal buying pressure and 45.2% (44.1%) in abnormal trading volume. Notably,

conditional on jumps in the same direction, explosive episodes feature significantly higher trading volume.

At the same time, the effect is dampened for abnormal buying pressure by -1.5% (4.7%), emphasizing that

jumps have a different nature. The latter effect is the opposite for observations that feature explosions up

(down) and jumps down (up) on the same date: those explosions feature more imbalanced orders. This

could be related to cases of extreme price impact that immediately reversed afterward, consistent with the

notion of a bubble burst.

To summarize, explosive episodes are closely related to the presence of abnormal trading volume and

abnormal buying pressure. While the former accompanies jumps as well, even with larger magnitudes, the

buying pressure is more related to the more gradual explosive price changes. The episodes with explosions

are associated with the widening spread, but the magnitude of the effect is modest, especially in comparison

to jumps.

23The reported abnormal bid-ask spread is normalized by the preceding 30-day average of daily dollar volume effective spread
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Figure 10: Average Liquidity Measures around Explosions and Jumps

This figure displays the average daily abnormal trading volume, abnormal buying pressure, and abnormal effective spread measured

on the day of detection together with the preceding day for either explosions, jumps, or both. For the sake of clarity in presentation,

cases with a relatively low number of observations are excluded, such as explosions up with jumps down on the same day. Refer to

Table 11 for the specific numbers including the rare cases.
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5.3 Explosiveness in low frequency volatility

Prior research has emphasized the importance of daily extreme returns, also called price jumps in the litera-

ture, in influencing both realized variance and the behavior of average stock prices (e.g., Savor (2012), Jiang

and Zhu (2017), Kapadia and Zekhnini (2019)). When viewed from a broader perspective, many explosive

episodes might initially appear as jumps due to their association with substantial price movements.24 How-

ever, as we have observed, when we delve into the high-frequency price dynamics, the behavior of explo-

siveness differs from the theoretical concept of jumps. Explosive episode returns tend to display a relatively

smooth pattern, characterized by partial reversals—a feature not typically observed with real high-frequency

jumps. The absolute magnitudes of the explosions prior to detection already suggest that they must signif-

icantly contribute to the overall variance of stocks. This subsection reports the total share of the explosive

episodes in the idiosyncratic variance.

I will focus on daily returns in stocks and adjust them based on six factors, five Fama-French factors

together with momentum factor,25 to get an idiosyncratic component of the stock return:

rad j
s,d “ rs,d ´

ÿ

f PF

β d´30,126
s, f fd .

Here, the factor exposures β d´30,126
s, f are daily pre-estimated betas derived from a 126-day rolling time-

series regressions on the six factors.26 d ´ 30 superscript indicates that the 30-day lagged exposure is taken.

The previous values of rad j
s,d are also used to build a rolling measure of idiosyncratic variance σad j

s,d´30 that

uses an exponentially weighted moving average (EWMA) model to aggregate previously observed.27

To study the contribution of explosive episodes to idiosyncratic variance, let us decompose the adjusted

return into three components. One is the return that occurs on the date when an explosion is detected. The

other is the return on days when no explosions are detected but still feature a substantial price change, named

a daily frequency or low frequency jump, and the residual return that can be attributed to other diffusive parts

of the return. The jumps are different from the high-frequency jumps used for comparison in Sections 5.1

and 5.2; the days with those jumps potentially could be classified into every one of the components including

the diffusive group. Additionally, split each of the explosions and jumps into components with upward and

24Similar spurious classifications of high-frequency “jumps” that are related to a local increase in volatility are discussed in

Christensen et al. (2014).
25The data is obtained from French’s website
26The rolling regression include an intercept.

27This approach follows Kapadia and Zekhnini (2019). σi,d “

c

p1 ´ λ q
řd´1

s“1 λ s
´

rad j
i,d´s

¯2
, where λ “ 0.94. Hence, the greater

weight is placed on the most recent realized abnormal returns.
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downward movement on the day. More specifically, the abnormal return decomposition is

rad j
s,d “ rad j

s,d ˆ
ÿ

dirPup, down

Eexpl,dir
s,d

loooooooooooooomoooooooooooooon

Explosions

`
ÿ

dirPup, down

rad j
s,d ˆ Jdir

s,d

looooooooooomooooooooooon

Jumps

`rad j
s,d ˆ

¨

˝1 ´
ÿ

dirPup, down

Eexpl,dir
s,d ´

ÿ

dirPup, down

rad j
s,d ˆ Jdir

s,d

˛

‚

loooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooon

Residual diffusive component

,

(10)

where Eexpl,dir
s,d is an indicator of a detection of an explosion on date d and Jdir

s,d is an indicator of a 3 idiosyn-

cratic volatility deviation on the day that is not an explosion.

Jup
s,d “ p1 ´ Eexpl

s,d q ˆ Itrad j
s,d ě 3 ˆ σad j

s,d´30u,

Jdown
s,d “ p1 ´ Eexpl

s,d q ˆ Itrad j
s,d ď ´3 ˆ σad j

s,d´30u.

All Other Diffusive L.F. Jump Up Explos. Up Explos. and L.F.J.Up L.F. Jump Down Explos. Down Explos. and L.F.J.Down

Share obs. 100 95.33 1.09 1.01 0.36 0.87 1.02 0.32

Average 2.23 -4.74 22.34 8.09 9.2 -16.62 -7.91 -8.15

S.E. 0.45 0.46 1.92 0.16 0.21 1.66 0.17 0.38

t 4.95 -10.34 11.64 49.42 43.78 -9.99 -46.45 -21.23

VW Average 0.55 -0.86 12.82 4.4 3.66 -10.99 -4.52 -3.95

2-days Return 2.31 -4.52 16.73 10 8.58 -11.89 -9.35 -7.25

Table 2: Decomposition of daily return into explosions, jumps, and other diffusive component.

The table presents the average returns based on the decomposition of abnormal returns into explosive, jump, and other diffusive

components. The components consist of (1) days with extremely positive (negative) returns, named low-frequency jumps up

(down), that do not feature explosion detection, (2) days that feature explosion detection (either up or down) but not the extreme

return, and (3) days that feature both of the phenomena and (4) all other daily returns, named "other diffusive." The extreme returns

are defined by the return being three times higher than the estimated idiosyncratic volatility. Each component is assigned zero if

another component is not zero. The first line of the table reports the share of daily observations attributed to one of the groups.

The second line reports the average annualized return calculated based on the component (including zeros mainly assigned to non-

diffusive components). Standard errors, clustered by calendar month and respective t-statistics, are reported in the following two

lines. The fifth line reports the average calculated using a value-weighted scheme. The sixth column reports the annualized returns

calculated over 2-day windows covering the event’s day (either l.f. jump or explosion, or both) and the preceding day. Given the

aggregation, the calculation uses twice less observation. Stocks with prices less than $5, observed within 30 trading days prior, and

those lacking clean data in TAQ meeting the filtering conditions for SADF estimation are excluded. The table includes common

stocks from September 2003 to December 2022, totaling 13,809,482 observations. All values are presented in percentage points.

See summaries in Table 13.

Table 2 presents each component’s annualized average contribution in percentage points to the daily

idiosyncratic return. Note that since ill-defined time-series data, mainly from the small and least liquid

stocks, are filtered out from the observations, the sample is biased towards medium and large stocks. See
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Table 13 for sample details. Explosiveness is captured on Fama-French 3 adjusted prices with k “ 1 and

α “ 0.02528. The total equally weighted average of the annualized adjusted return is 2.23%, which is not

zero due to (1) noisy estimates of factor exposures and their imprefect performance out of the sample, (2)

the presence of short-term reversal.29

The jumps component, excluding explosions, constitutes approximately 1.96% of the sample. The low

frequency jumps, known for bias toward upward movements, contribute approximately 22.34% to yearly

upward movements and 16.62% to downward movements, with a net positive effect generally compensated

by other diffusive parts of the return. Explosive episodes, with roughly equal probabilities in the sample,

can be split into two groups: those featuring a three standard deviation price change on the detection date

(0.36% and 0.32% for upward and downward movements, respectively) or not (1.09% and 1.02%). Explo-

sions disproportionately contribute to the average changes annualizing into 8.1% (9.2% for the interaction)

and -7.9% (-8.2%) for upward and downward movements, respectively. Hence, the dates of detected explo-

sions on average form 77.4% (upward) and 96.6% (downward) of the other extreme daily returns when an

explosion is not detected.

Similar to jumps, the magnitudes of the abnormal returns naturally decrease when using a value-weighted

scheme. They are reported in the last line of Table 2. The largest-cap stocks forming substantial value in

the sample have smaller idiosyncratic variance and generally better fit the rich factor structure we impose.

Since a substantial part of the explosive path might occur on the previous days as well, I also split the sample

into two-day intervals requiring the second day happening on the event, i.e., either detection of explosion or

jump,30 calculating two-day total return rad j,2
s,d “ p1 ` rad j,2

s,d q ˆ p1 ` rad j,2
s,d´1q ´ 1.

Similar to jumps, the magnitudes of the abnormal returns naturally decrease when using a value-weighted

scheme. They are reported in the last line of Table 2. The largest-cap stocks, forming a substantial value

in the sample, have lower idiosyncratic variance and generally better fit the rich factor structure we impose.

Since a substantial part of the explosive path might have also occurred on the previous days, I also split the

sample into two-day intervals, with the second day happening on the event, i.e., either the detection of an

28Results are similar for no adjustment, but using estimates on adjusted prices is a more accurate approach for focusing on

idiosyncratic variance. The significance level α “ 0.025 is chosen to balance between the main specification α “ 0.01 and α “ 0.05.
29This value is slightly smaller than the average idiosyncratic return based on FFC adjustment over the longer samples. For

example, see (daily) summary for 1926 to 2016 sample in Kapadia and Zekhnini (2019). However, the jumps have a larger order of

magnitude in my sample.
30I start the rolling procedure from the first date, that splits the sample for a firm into two-day intervals. For the few cases that

feature two event dates in the same 2-day window, I use only the second day for identification and classification. If there is an even

number of days between two events, so that the next event happens on the first date, I will use the one day return prio the two-days

window with event and one return after, for consistencu
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Figure 11: Idiosyncratic Variance Share by explosive events

explosion or jump,31 calculating the two-day total return rad j,2
s,d “ p1 ` rad j,2

s,d q ˆ p1 ` rad j,2
s,d´1q ´ 1. Annual-

izing those returns the explosive two-day periods overpass contribution into the average return by two-day

windows that feature the low-frequency jump being 18.58% (-16.6%) for jumps up and jumps down respec-

tively.

The contribution of explosive dynamics to the idiosyncratic variance of stocks can be calculated based on

the return decomposition of (10). The first-order effect comes from the squared sum of rad j
s,d ˆ

ř

dir Eexpl,dir
s,d .32

Figure 11 reports the share of the component in the variance for four five-years periods in my sample.

Specifically, I report idiosyncratic variance share upward and downward explosions defined as
ř

d
ř

sprad j
s,d q2 ˆ Eexpl,dir

s,d
ř

d
ř

sprad j
s,d q2

, for dir P tup, down.u

Over the years, explosive episodes have disproportionately contributed to the share of idiosyncratic

variance. The total share of the variance accounted for by explosions is 20.8% (24.2% for a 5% significance

level) and ranges from 19.6% to 23.6% in the four groups, with a greater share of 12.2% (13.7%) assigned

to explosions up, ranging from 10.2% (11.9%) to 13.2% (15.9%). Including a day before the explosion
31I start the rolling procedure from the first date, which splits the sample into two-day intervals. I use only the second day to

identify and classify the period for the few cases with two separate event dates in the same 2-day window. If there are even days

between two events, the next event will happen on the first date of the respective second-day window. To deal with the problem, I

use the one-day return before the two-day window with the event and one return after for consistency.
32Formally since explosive episodes are preceded by some momentum and followed by some reversal, those parts can be incor-

porated into the variance decomposition as well using the covariance terms. The numbers are of second-order importance after

incorporating the day before and after the period into the gross-return
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and considering a 2-day interval period, as we did for the analysis of average returns, increases the share

of captured idiosyncratic variance to 29.5% (35.2%). It is worth noting that although the frequency of the

detected episodes slowly decreases, the contribution to idiosyncratic variance does not. I must mention

that the difference is more pronounced in the most recent years and when relaxing the significance level of

detection, pointing to the less short nature and more difficult-to-detect nature of episodes in recent years.

The impact on idiosyncratic variance is notably more pronounced for small and medium stocks. As a

consequence, the value-weighted share attributed to explosions reaches 15.2% (18.4%). Specifically, large

stocks exhibit a lower susceptibility to upward explosions than small and medium stocks. In contrast, the

incidence of downward explosions remains relatively consistent across the size groups and the years.33 This

observation aligns with the mechanism that will be discussed further with rooting in the concept of limited

supply in the economy. Medium and smaller stocks typically entail higher shorting costs and lower overall

supply in the market, fostering an environment conducive to explosive episodes. However, when considering

downward explosions, the primary challenge lies in obtaining additional liquidity (cash), a hurdle that should

not differ when trading medium or large stocks.

5.4 Other Descriptives of Explosiveness

The previous sections have detailed explosive events in stocks, emphasizing their connection to liquidity,

time-series properties, average returns, and volatility. The pivotal question that remains is: Which firms are

prone to being explosive? To address this, I will leverage a comprehensive set of 34 firm characteristics,

including main variables from Freyberger et al. (2020).34 This set is commonly employed in recent literature

that explores the cross-section of returns in conjunction with firm characteristics (e.g., Kelly et al. (2017),

Kozak et al. (2020)). The included variables encompass market capitalization (mktcap), book-to-market

ratio (bm), factor exposures (betamkt, betahml, betasmb), leverage (lev), momentum (mom), and others

detailed in the Appendix35. These characteristics undergo week-by-week cross-sectional transformation

using CS-normalization36, which uniformly maps them into interval r´0.5,0.5s, similar to the approach in

Kelly et al. (2017).

To analyze the impact of all those variables jointly, one would need to reduce the sample further, as

33Additional details are available in the Appendix.
34These are the firm characteristics I could replicate for the study. For example, Kelly et al. (2017) use 36 firm characteristics.

In comparison, I exclude capital intensity, the ratio of change in property, plants, and equipment to the change in total assets, fixed

costs-to-sales, the ratio of sales, and general administrative costs to sales, but include SMB and HML exposures.
35Refer to Table A4.2 in the Appendix for a comprehensive list.
36Refer to the procedure outlined in the Appendix.
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some details of the firm’s balance sheet or previous stock performance, necessary for the estimation of the

characteristics, are missing. This introduces an additional bias toward the largest and most liquid firms,

amplifying the effect of the previous filters working in the same direction. The total sample for this analysis

is 7,138,967 firm-date observations37. For further stability, I also classify a week per stock as an explosive

up (down) week if it features at least one explosive up (down) detection date, forming 1,575,707 week-firm

observations. This approach allows for reducing the level of imbalance38 in the data, increasing the rate of

explosion detection as a dependent variable, and avoiding extra noise when fitting the models that describe

explosiveness via firm characteristics.

Figure 12 illustrates the unconditional relationship between explosiveness up detected at a 2.5% signif-

icance level39 and each firm characteristic. It shows the percentage of firms, sorted by a particular char-

acteristic at the start of an estimation week, that are anticipated to exhibit explosive behavior thereafter.

The first observation is that, for most firm characteristics, the variation in explosiveness is very modest and

stays around 6.3% across the majority of characteristic groups. Explosiveness up never goes below 3%,

reaching a 5% threshold for only a few groups. Exceptions typically occur for groups with extreme firm

characteristics, revealing a non-linear nature of the explosiveness association with the firm characteristics.

The most pronounced non-linear dependencies can be observed in characteristics related to the past per-

formance reflected in standard momentum (mom), intermediate momentum (intmom), long-term reversal

(ltrev), closeness to 52-week high (w52h).40 The strongest monotonic relationships observed in the data are

when firms occur sorted by market capitalization (mktcap), total assets (assets), and return on net operating

assets (noa), indicating that smaller firms are more likely to be explosive. Similarly, firms with higher bid-

ask and idiosyncratic volatility are more likely to be explosive, though the former has lower explosiveness

for extremely high values. Notably, firms with the lowest (highest) turnover are less (more) explosive up,

but for other turnover levels, explosiveness up stays flat around 6.3%.

In a similar vein, Figure 13 illustrates the unconditional connection between explosiveness down and

various firm characteristics. In contrast to explosiveness up, explosiveness down shows a weaker association

37The reported number is for the sample based on estimates with respect to no adjustment specification. Using specifications

with adjustments reduces the size of the sample slightly.
38The imbalance term is related to machine learning literature, where in the categorization problem, the imbalance dataset is

referred to as the case when one category (no explosion) is significantly more likely than another (explosion).
39I use no adjustment and k “ 1.
40Momentum (mom) is a cumulative return from twelve months before the explosiveness prediction to two months before.

Intermediate momentum is a cumulative return from twelve months before the explosiveness prediction to seven months before.

Closeness to the 52-week high is the ratio of the stock price at the end of the previous calendar month and the previous 52-week

high price.
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with variables reflecting the size of firms and exhibits a more uniform pattern across most firm character-

istics. Specifically, only firms with the smallest market capitalization seem less explosive. Additionally,

stocks with the largest bid-ask spread and the smallest turnover are notably less explosive down. The mo-

mentum/reversal characteristics display a similar pattern, resembling the "smile" observed for explosiveness

up, suggesting that an extreme return over different horizons precedes explosion down.

Given the observed (non-linear) relationship between firm characteristics and explosiveness, alongside

the strong correlation among firm characteristics themselves, determining the distinct contributions of each

individual firm characteristic is a challenging task. To partially address this issue, I use a variety of econo-

metric and machine learning methods to understand the influence of these characteristics while simultane-

ously controlling for other predictors. In this section, the primary focus is on the linear relationship between

explosiveness and firm characteristics, while the Appendix presents additional results about the unveiling of

non-linear relationships.

I start the analysis by employing logistic regression, wherein the weekly explosion detection event is

regressed against the normalized firm characteristics, presenting the results in Tables 14 and 15. Logistic

regression proves to be suitable for capturing the first order linear dependencies. The CS-normalization

ensures a comparable distribution of the explanatory variables, facilitating a straightforward interpretation

of the logistic regression coefficients. These coefficients represent both the quantitative change in explo-

siveness associated with a characteristic’s variation and the relative "importance" of the firm characteristic

in the specification.41

The first column of Table 14 presents the coefficients derived from the logistic regression model of

the explosion indicator against the normalized firm characteristics. Enclosed within parentheses are 90%

pivot bootstrapped confidence intervals.42. Notably, the most influential explanatory variable is market

capitalization with a coefficient of -0.29. This suggests a 1.70% decrease in detection probability solely due

to the size when transitioning from the smallest to the largest firm. Following in economic significance is

turnover, with a coefficient of 0.17, implying a 1% increase in detection probability. However, as illustrated

in Figure 12, this effect appears to be primarily driven by firms with the smallest turnovers.

Additional notable contributors identified through logistic regression encompass previous performance

and volume-based factors, including momentum (-0.18 with a -1.05% probability change), standard unex-

plained volume (-0.15 with a -0.88% probability change), short-term reversal (-0.08 with a -0.47% probabil-

41Here, importance denotes the variable’s contribution to explaining the optimized log-likelihood in the context of logistic re-

gression.
42The bootstrap procedure entails 1,000 draws. The utilization of bootstrapped confidence intervals is adopted for consistency

with the confidence intervals obtained for penalized logistic regression.
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ity change), intermediate momentum (0.14 with a 0.82% probability change), and closeness to the 52-week

high (0.11 with a 0.64% probability change). Notably, these factors operate in different directions. They

are likely to offset each other, as indicated, for instance, by the correlation between intermediate momen-

tum and momentum (0.71) and between turnover and standard unexplained volume (0.25) in the sample.

Furthermore, as depicted in Figure 12, the effects for all variables exhibit non-linear patterns.

The idiosyncratic volatility exhibits predictive power for explosiveness (0.10 with a 0.59% probability

change), suggesting that stocks with higher volatility are more likely to be detected as explosive up. This ob-

servation is quite remarkable as, mechanistically, the detection of explosions with SADF-based procedures

should be more challenging for stocks with higher volatility. This difficulty arises because the denominator

of the rolled ADF procedures, reflecting the standard error for the estimated explosive coefficient in (4), in-

creases with heightened volatility. Simultaneously, it is essential to acknowledge that idiosyncratic volatility

(idiovol) is derived from lower-frequency daily data, as detailed in Section 5.3, and may not accurately re-

flect high-frequency volatility. The mechanical association highlighted above likely underlies the observed

opposing effect of market beta (-0.12 with a -0.70% probability change), indicating a decreased likelihood

of explosive events for stocks with more prominent exposure to the market.

Firm characteristics associated with balance sheet data also emerge as significant predictors of explo-

siveness. This encompasses Tobin’s q (q; 0.10 with a 0.59% probability change), return on equity (roe;

0.11 with a 0.64% probability change), return on assets (roa; -0.09 with a -0.53% probability change), and

book-to-market ratio (bm; -0.09 with a -0.53% probability change). Note that some of the reported coeffi-

cients may not be entirely robust to regularized versions of logistic regression. To illustrate this, I present

alternative specifications in additional columns of Table 14, employing penalized logistic regression, com-

monly referred to as Elastic Net.43 I employ three specifications incorporating Ridge (L2) penalty, Lasso

(L1) penalty, and the combined average of these penalties, referred to as Elastic Net with α “ 0.5. The

hyperparameter λ , controlling the strength of the penalty, is tuned to minimize likelihood loss through a

cross-validation procedure.44

43Compared to the standard logistic likelihood optimization, minβ0,β
1
N

řN
i“1 l

`

yi,β0 ` β T xi
˘

, where l
`

yi,β0 ` β T xi
˘

is the stan-

dard logistic cross-entropy based on indicator yi (indicator of detection), xi is the set of firm characteristics, and β -s are fitted param-

eters, the optimization in elastic net is augmented by penalty for overfilling estimated coefficients beta λ
“

p1 ´ αq}β}2
2{2 ` α}β}1

‰

,

resulting in problem minβ0,β
1
N

řN
i“1 l

`

yi,β0 ` β T xi
˘

` λ
“

p1 ´ αq}β}2
2{2 ` α}β}1

‰

. See details in the Appendix.
44A 10-fold cross-validation approach is employed, wherein the sample is randomly divided into ten subgroups. For each group

G j, j “ 1 . . . ,10, estimates are derived on the residuals of the remaining nine groups G´ j to calculate the sum of ten cross-entropy

results. The sum is minimized over λ to determine the hyperparameter λ used (refer to Hastie et al. (2009) for details and Stone

(1974) as the original reference).
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The Ridge regression notably diminishes the coefficients on market capitalization (-0.14 with a -0.82%

probability change), momentum (-0.09 with a -0.53% probability change), book-to-market (-0.06 with a -

0.35% probability change), and turnover (-0.11 with a -0.64% probability change). Relatively minor changes

are observed in standard unexplained volume (-0.11 with a -0.64% probability change), market beta (-0.10

with a -0.59% probability change), and idiosyncratic volatility (0.08 with a 0.47% probability change). The

coefficient on return on net assets (rna) even experiences a slight increase to 0.06. Despite these variations,

most coefficients become smaller and are not economically or statistically significantly different from zero.

The Lasso and Elastic Net specifications yield coefficients that are comparable to the original non-

penalized logistic regression, with a noticeable distinction. In these penalized models, return on assets (roa),

return on equity (roe), assets, Tobin’s q, sales to price ratio—variables likely compensating each other—are

effectively set to zero. Similarly, closeness to the 52-week high, momentum, and intermediate momen-

tum witness significant reductions in magnitude. The most pronounced effects are observed for classical

characteristics such as market capitalization, book-to-market ratio, earnings-to-price, and market beta. Two

other substantial contributors, turnover and standard unexplained volume, continue to exert varying impact,

potentially offsetting each other within the sample.

The coefficients for the non-penalized and penalized logistic regressions for explosiveness down are

comparably presented in Table 15. Without delving into extensive detail on each coefficient, a notable

distinction arises in the reversal of the sign and subsequent reduction to zero for the market capitalization

coefficient with the introduction of the penalty. Additionally, bid-ask spread (-0.20 with a -1.36% probability

change), capital turnover (0.22 with a 1.49% probability change), and operating leverage (-0.20 with a -

1.36% probability change) assume more pronounced roles.

The principal contributors to explosiveness down seem to be momentum (0.70 with a 4.80% proba-

bility change), closeness to the 52-week high (-0.53 with a -3.62% probability change), and intermediate

momentum (-0.20 with a -1.42% probability change). Similar to the previous analysis, the substantial eco-

nomic magnitudes of these contributors are likely to offset each other. Nevertheless, the coefficients remain

both economically and statistically significant after the application of regularization, underscoring the closer

association of explosiveness down with the past performance of the stock.

The preceding analysis underscores the pivotal role of firm characteristics in relation to the explosive

behavior of stocks. In conjunction with firm fundamentals, past performance serves as a predictor for ex-

plosiveness, highlighting the need for variable control in subsequent analyses. The introduction of regular-

ization highlighted potential fragility in the dependencies, signaling susceptibility to overfitting. However,

the ultimate conclusion reaffirms the robustness and significance of size variables, momentum/reversal vari-
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ables, and variables reflective of past volume.
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Figure 12: Explosion Up Detection by Firm Characteristic

This figure illustrates the average detection rate for explosions up aggregated by calendar weeks for stocks sorted by specific firm

characteristics. The considered firm characteristics are from a set described in Freyberger et al. (2020). The firm characteristics

are normalized to a range from -0.5 to 0.5 at the beginning of each estimated week to ensure a uniform distribution within the

interval (CS-normalization). Based on these values, each week, firms are further sorted into 100 groups, and the explosiveness rate

is measured and averaged across all firms classified into a group and all weeks. The (100) averages are reported on the Y-axis.
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Figure 13: Explosion Down Detection by Firm Characteristic

This figure illustrates the average detection rate for explosions down aggregated for stocks sorted by specific firm characteristics.

The explosiveness down is an indicator of detecting explosion down on at least one day in a calendar week. It is averaged across

the stocks sorted into one of hundred groups per firm characteristic. The considered firm characteristics are from a set described

in Freyberger et al. (2020). The firm characteristics are normalized to a range from -0.5 to 0.5 at the beginning of each estimated

week to ensure a uniform distribution within the interval (CS-normalization). Based on these values, each week, firms are further

sorted into 100 groups, and the explosiveness rate is measured within the group and across all weeks. The hundred averages per

firm characteristic are reported on the Y-axis.
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6 Short Squeezes

The previous sections showed that explosive behavior is a widespread phenomenon in individual stocks.

The time-series property of the individual stocks did not attract that much attention until recently, when

the market experienced a bunch of outstanding exuberant episodes in such stocks as GME, AMC, and in

other broadly referred as "Meme Stocks". Not only did the short squeezes attract attention of social media

attention but also pushed market aggregate volatility to histroical highs.

In October, 2022, the U.S. Securities and Exchange Commission (SEC) issued Staff Report45 aiming to

describe the market environment for the explosive episodes in January 2021 mentioning that “the underlying

causes of the meme stock phenomenon that are unrelated to market structure are a subject of speculation

that is beyond the scope of this report.”

The paper’s attention to short squeezes is highly relevant since they can be seen as amplified versions

of "regular" explosive episodes and are often driven by similar market forces. The models presented in

Sections 7 and 8 leverage some of the underlying mechanisms that are likely to contribute to short-squeeze

events, drawing on a similar narrative of apparent forced short interest liquidation, which are particular cases

of inelastic demand in the models.

6.1 Squeezes in January 2021

On the last week of January 2021, the market observed a sharp increase in the price of the Game Stop,

Nokia, and AMC stocks. Starting January 21, the Game Stock price grew up from $39 to $347 though

no positive news of a similar scale about the company’s fundamental came over the period. The sharpe

increase was broadly recognized as a bubble and firstly attributed to retail investors who blindly continued

purchasing the stock despite the extreme price driving the price to its highs. On January 28, a popular trading

platform Robinhood made the stocks unavailable for purchases later describing it by financial requirements

and capital obligations46. Even this measure that effectively limited stocks’ demand had a very modest effect

on the price.

There are some aspects that might make the “bubble” different from many other bubbles studied in the

literature. Fist of all, to big extend the life expectancy of the “bubble” was predetermined and quite short.

The last week of January was not a random week for the sharpe price increase. January 29 is the settlement

date for the options on a Game Stock. There were some indicators that a huge short position must be closed

45Staff Report on Equity and Options Market Structure Conditions in Early 2021
46https://blog.robinhood.com/news/2021/1/28/an-update-on-market-volatility
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Figure 14: GME "Squeeze" in January 2021

before the date, and the expectations were that demand on the stock is almost inelastic in the stock price.

That partially rationalizes the bubble as a chance to sell stock during a short-squeeze event, but also sets

the limits for the life-expectancy of the bubble: after the short-squeeze the stock demand must return to

price-sensitive level.

6.2 Empirical observations with GME squueze

Figure 14 illustrates the log-price dynamic of GME over twenty business days period since January 11, 2021.

The supremum-ADF test identifies a bubble at a 1.2% significance level around the stock’s peak on January

27. Notably, the stock exhibits highly volatile behavior, characterized by convex price growth since January

13, starting with a significant price jump. The date of January 13 is particularly noteworthy as it marks the

dissemination date for short interest data, revealing a reported ratio of short interest to shares outstanding

at 1.02. Although this short interest ratio was not the highest among recent disseminations, the fact that

it did not substantially decrease indicated to traders the potential difficulties in liquidating and covering

the significant short interest position. This short interest was also reflected in the high outstanding open

interest of options, which required delta hedging to manage risk. The delta hedging strategy was dynamic
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Figure 15: Some other "Squeezes" in January 2021

and adjusted as the stock price evolved effectively increasing outstanding short interest.

6.3 Model Explanation

At the same time, the equilibrium dynamic that can maintain the high prices with many potential sellers

is unclear. In a classical model with many rational sellers of the same good, the price converges to a

fundamental value of the good in any Nash-type equilibrium.47 Hence, one must assume a very strong

coordination power among the investors that would allow keeping the prices high. Even if the coordination

is possible, say via platforms such as Reddit, the explosive price dynamics requires some explanation: why

does not price jump immediately to some large “cooperative” price? If the price is driven by irrational

investors only, then one might justify why big institutional investors do not exploit the abnormal prices by

selling off their holdings.

The explanation proposed in this paper revolves around the existence of a strategic equilibrium that can

lead to market explosiveness even with rational traders. Central to these events is the presence of expected

inelastic demand for the asset. The amplifying mechanism responsible for generating explosiveness lies

47This will be discussed in more detials in the model section (Section 7) when studying the symmetric equilibrium.
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in the uncertainty regarding the size of demand. Sellers must carefully consider when to sell due to their

limited endowment of the asset and potential challenges in immediately borrowing stocks for further sale.

Given the impracticality of trading all at once, the dynamic trading results in explosive price growth.

In the context of short squeezes, the inelastic demand arises from the need to cover an option position or

deliver stocks to close short positions. However, the precise magnitude of this demand remains uncertain.

It is challenging to determine how much short sellers will require to successfully cover their positions or at

what point these sellers might default, thereby abruptly ending the inelastic demand.

The argument build around the role of expected inelastic demand is formalized in the next section. In

Section 8, the mechanism is augmented by apparent presence of insiders that formalize the explosiveness as

a price-discovery object as well.

7 Model with No Insiders

Setup

Consider an environment with one asset and two risk-neutral agent types: an inelastic impatient buyer

and an infinite number of sellers. The sellers, denoted and indexed by s, are identical, endowed with a unit of

an asset with a reservation value V . Their total mass is S , S P R`, 0 ď s ď S . There is no uncertainty about

V . A buyer faces an inelastic demand for the asset, with a size of B̃ ě 0.This demand follows a continuous

distribution with a cumulative distribution function (CDF) ΦB over the interval r0, sBs, sB P R` Y 8 and

enters the market to trade. Assume that the CDF function for the demand is twice differentiable, ΦB P C2.

The demand is unknown by sellers and is a private information of the buyer. The buyer incurs a marginal

cost of not fulfilling their demand by a required unit of asset, Y P R` Y 8. Y is effectively the maximum

price that sellers can “squieeze” out of the buyer. Assume that the cost is higher than the reservation value

incentivizing the buyer to trade, Y ą V .

Trading takes place in two steps. First, sellers choose the price, ps, they want to sell with. Second, the

buyer choses the set of sellers to buy from B, with total mass B, B “ |B|. The terminal utilities of the sellers

are

us “ pps ´V q ˆ Its P Bu

The terminal utility of the buyer is

uB “ ´
ż

sPB
psds ´ rB̃ ´ Bs` ˆY.

The sellers act in the environment of uncertainty about the size of demand. Let us study Bayesian Nash

Equilibria with pure strategies of buyers in the two stage model.
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General Form

Without loss of generality, focus further only on equilibria where the sellers are sorted by the prices they

submit in the first step: ps ě ps1 if and only if s ě s1, and the buyer randomly picks the seller to buy from

when given similar prices and does not need to buy all supplied assets at given price. In other words, the

sellers form a “queue” based on their indices to decide who will sell at higher price. The buyer’s problem,

by design, is trivial. They purchase the asset from sellers that require a lower price than their competitors

and a price lower than Y . Assume that all sellers meet the latter condition in equilibrium, B “ mintB̃,Su,

with the maximum price paid for an asset ppBq. Thus the buyer goes over the “queue” and buy until they

satisfy the inelastic demand. The sellers’ actions can feature multiple equilibria described in the following

proposition.

Proposition 1. Two types of Nash Equilibria exist in the model. The unique symmetric equilibrium with

p˚ “ V exists if sB ă S and only if sB ď S . The asymmetric equilibria with continuous and non-decreasing ps

exist if S ă sB and only if S ď sB. For those equilibria, ppSq “ Y and pp0q “ Y ˆ p1 ´ ΦBpSqq `V ˆ ΦBpSq,

if Y ă 8. The equilibrium is unique if Y ă 8.

Let us discuss the main steps getting the result and develop reasoning behind possible explosiveness in

the asymmetric equilibria deriving the sufficient condition. Focus on the case, Y ă 8. See the Appendix for

discussion of Y “ 8, where an infinite set of asymmetric equilibria arises.

The most straightforward equilibrium is the symmetric one where all sellers sell at the same price,

denoted as p˚. Given that the size of inelastic demand is unknown and can be as small as zero, sellers have

an incentive to compete to sell first. Deviating to a price slightly lower, say p1 “ p ´ ε , is always beneficial,

as long as p˚ ě V , since it guarantees selling. This Bertrand-type competition drives the price to converge

to p˚ “ V forming the unique symmetric equilibrium in the setup.

However, when sB ą S (indicating there could be less sellers than the true demand), the symmetric

equilibrium ceases to exist. In this case, since p˚ “ V guarantees zero profit for all sellers, any seller can

find a profitable deviation, selling at a price Y ą p1 ą V with non-zero probability, resulting in non-zero

utility. In this case, the symmetric equilibrium is replaced by the asymmetric equilibrium.

Therefore, when there are enough sellers to fulfill the demand, the inelastic nature of the demand may

not lead to any price impact from the liquidity trader. To develop an equilibrium where price impact is

observed, one must allow all traders to have a chance to sell.

Consider the case where sB ě S and look for asymmetric equilibria that, ex-ante, guarantee the same

profit for sellers making them indifferent between chosen prices maintaining Nash Equilibrium. Using a
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similar argument to the symmetric case, one can show that it is impossible to have an equilibrium where a

non-zero mass48 of sellers aim for some price p ą V since the demand distribution is continuous. If the mass

of sellers concentrates around the price p “ V , then any of these sellers would find it advantageous to offer

a higher price undercutting the others with ps ą V (who must exist in the asymmetric equilibrium). This

strategy allows them to make a non-zero profit on average. Consequently, this situation leads to a situation

where every seller in the equilibrium can expect to earn some profit, resulting in a price level of p0 ą V .

Consider the asymmetric equilibrium where no mass is concentrated at a given price V ă p ď Y . Denote

mass density of sellers aiming p by mppq,
şY
V mppqd p “ S . Note that it is impossible to have mppq “ 0, for

p P pp1, p2q, if mpp1q ą 0 and mpp2q ą 0. Otherwise s with ps “ p1 can find a profitable deviation49. That

means that mppq has support that is a connected set.

Denote the lower and upper limits of the price interval by p and p̄ 50 respectively. In equilibrium, all

sellers must make the same endogenous profit π˚. This indifference condition pins down the mass of sellers

mppq:

πs “ π˚ “ P

˜

B̃ ě
ż ps

p
mppqd p

¸

ˆ pps ´V q “
”

1 ´ ΦB

˜

ż ps

p
mppqd p

¸

ı

ˆ pps ´V q (11)

Therefore, each seller, considering the actions of others, selects a price that strikes a balance between in-

creasing their profit (ps ´V ) and the probability of achieving this profit, which is determined by the density

of sellers offering a lower price. Equation (11) establishes the connection between the mass of sellers mppq,

the distribution of expected demand ΦB, and the equilibrium profit level π˚.

ż ps

p
mppqd p “ Φ´1

B

ˆ

1 ´
π˚

ps ´V

˙

First, note that the expected profit defines the lowest suggested price: p “ p0 “ π˚ `V . Since demand

is completely inelastic, sellers can submit an unlimited price as long as it does not exceed Y and does not

violate the break-even condition for other sellers in equilibrium. For an outside observer, the equilibrium

looks like an immediate jump in price when the inelastic buyer just enters the market. Second, note that the

maximum price must be the marginal cost of the buyer, p̄ “ Y . Otherwise, the “last” sellers in the “queue”

have a profitable deviation selling at Y . Those two conditions effectively set the starting and terminal prices

if Y ă 8:

π˚ “ pY ´V q ˆ p1 ´ ΦBpSqq.

48That means no equilibrium with infinite mass density of sellers.
49They would be strictly better off setting price p2 ´ ε for sufficiently small ε .
50 p̄ might be infinite.
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and

p “ Y ˆ p1 ´ ΦBpSqq `V ˆ ΦBpSq.

It is important to note two key observations. First, the equilibrium profit and the lowest available price

both strictly increase with the marginal cost of the sellers and the probability that the inelastic demand

overshoots the total supply of the asset in the economy. Second, the "initial," i.e., the lowest price, is

determined by the weighted average of the maximum price at which buyers are willing to buy and the

reservation value positively depending on both with a higher weight of the marginal cost as long as supply

of asset is lower. This is an implicit consequence of having less competition in the model, even though the

model assumes a competitive environment with an infinite number of sellers.

The gap between the initial price and the reservation value indicates that an external observer would

observe a jump in the price when trading begins. This means that the price deviates from the reservation

value solely based on the expectation of inelastic demand from buyers. A similar price jump can be observed

on the date when the short interest data for GameStop stock was disseminated on January 13, 2022 (see

Figure 1) and for some other cases of explosive episodes.

The mass of other prices is defined by the distribution density of ΦB:

mppsq “
π˚ ˆ pps ´V q´2

φB

´

Φ´1
B

´

1 ´ π˚

ps´V

¯¯ , ps ą p

Though the model is a two-period model51 , one can envision how the price dynamics would appear

from an external perspective if it were recorded while progressing through the “queue” along with the buyer.

Consider B̃ enters the market at a constant speed C, this can be thought of as a throughput of the market,

starting at t “ 0. Then the observed price at time t (after just discussed initial jump), denoted as pptq, is

determined by the following equation:

ż pptq

p
mppqd p “ C ˆ t.

Taking the derivative twice with respect to t, we get

p2ptq “ ´C2 ˆ
m1ppptqq
mppptqq3 (12)

This expression reveals a crucial equilibrium condition for the price movement to exhibit a convex

function. It states that the endogenous mass density, denoted as mppq, must be a decreasing function. In

other words, as the price increases, fewer sellers are willing to be patient and wait to sell later. The intuition

51A richer setup will be considered in Section 8.
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behind this condition is clear: when the mass of sellers is uniformly distributed over prices, the price impact

would be linear in response to the buying pressure from the impatient buyer. However, as the mass of sellers

willing to provide at a lower price decreases, the probability of selling later also decreases, requiring higher

compensation, which ultimately pushes the price impact higher, resulting in a convex price function.

The closed-form expression for the mass density is more complex (for details, please refer to the Ap-

pendix), but the general property is that the mass density decreases more rapidly as the tail of φB gets

lighter, i.e., the average demand gets more concentrated around small values with little chance of getting

extreme. The necessary condition for the path to be explosive can be reduced to the following restriction on

distribution of demand:52

φ 1
Bpzq

φBpzq
ě ´2 ˆ

φBpzq
1 ´ ΦBpzq

, 0 ď z ď S.

Special cases of solutions: power and exponential distribution

To illustrate the idea, I derive the closed-form solutions for multiple distribution classes commonly

appearing in the literature. All those distributions may result in explosive change of the price. The first is

the class of power distributions for the size of demand, ΦBpBq “ 1´p1`Bq1´β , β ą 2.53 Then the solution

for the price gets form of,

pptq “ V ` pY ´V q

ˆ

1 `Ct
1 `S

˙β´1

,

The power parameter β plays a significant role in controlling the curvature of the price function, pptq. A

higher value of β leads to a steeper price increase in response to additional units purchased by the buyer,

resulting in a faster price movement. Simultaneously, the initial price, denoted as pp0q, decreases. This

initial price decrease occurs as the supply of the asset, represented by S , increases. Additionally, when the

marginal cost of the insider rises, the entire price curve shifts upward. This upward shift is more pronounced

for the sellers who enter the market later. Thus, the power parameter β and other factors such as supply and

marginal costs collectively influence the shape and dynamics of the price function.

In the example where ΦB follows an exponential distribution, denoted as ΦBpBq “ 1´e´βB, the demand

rate is memory-less. This means that each additional unit of demand dB is equally likely to occur with a

probability of βdB. The price dynamics under this distribution result in exponential growth:

9pptq “ βC ppptq ´V qdt

52This condition guarantees negative m1ppsq derived in the Appendix (section A5.1).
532 ě β ą 1 returns same result but the solution is not convex.
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The rate of price growth is directly proportional to the parameter β . When the tail of the exponential

distribution becomes thinner, meaning β increases, the rate of price growth also becomes larger. In other

words, a higher β leads to faster exponential growth in the price. The other properties repeat established

properties for the power distribution functions.

Finally, consider the case where the demand follows a half-normal distribution. This is in line with

the commonly assumed normal distribution of signals and demands in market microstructure models. The

density is considered only in the positive region as follows:

φBpB;β q “
2
a

β
?

π
exp

`

´βB2˘

B ě 0.

To maintain consistency with the previous notation, β is the inverse of two variance parameters of the

corresponding Gaussian distribution. The closed-form solution for the price is given as:

pptq “
π˚

2ΦN r´Ct
a

0.5β s
,

where ΦN is the CDF of the standard normal distribution, and π˚ “ pY ´V qp2 ´ 2ΦN pS
a

0.5β qq. Under

this distribution, the price reacts even more aggressively to additional demand compared to the exponential

case. As the variance of the Gaussian distribution shrinks and its tails become thinner, the reaction becomes

more aggressive. The function Φ´1
N p´xq is increasing at a rate faster than exponential.

8 Model with Insider

Incorporating partial reversal into the model involves introducing an informed trader, the insider. In this

section, I will build upon the model discussed in the previous section. To make the model more tractable, I

will incorporate dynamic decision-making by the sellers as demand flows into the market. Demand can be

generated by both an impatient buyer and an insider who mimics the other. Faced with uncertainty about

who they are trading against, sellers continue to provide explosive prices, as discussed in the previous case,

but prices now carry informational value.

8.1 Basic Setup

Consider a model featuring two types of agents: a buyer and an infinite number of sellers. Buyers can be

either insiders or liquidity traders discussed in previous section. The information of buyers type is privately

known but not revealed to sellers. The agents trade one asset with a reservation value V that reflects ex-ante

sellers’ expectation of the asset.

58



From the perspective of sellers, assume that there is a probability, denoted as pI,0, that an agent with

private knowledge of the true asset value Ṽ enters the market. Importantly, the ex-ante expected value of

the asset remains V . In essence, pI,0 represents the likelihood of an insider’s presence in the market and

the probability that this insider knows Ṽ ě V . I assume that Ṽ is distributed over the interval rV,V̄ q with

a continuous probability density function denoted as φV and a cumulative distribution function denoted as

ΦV . These functions are infinitely differentiable, and ΦV belongs to the class C8.

Assume that inelastic impatient buyers discussed in the previous section enter the market with a prob-

ability of 1 ´ pI,0. They incur a limited marginal cost due to not fulfilling their demand Y . Additionally,

similar to the previous setup, they face a demand of size B̃ with a continuous distribution. Its CDF and PDF

are denoted as ΦB and φB respectively, ΦB P C8, and this demand has a support range of r0, B̄s. Y and B̄ can

potentially be infinite.

Finally, each seller is endowed with a unit of the asset. The total mass of sellers and asset supply is

denoted by S . S ď B̄ that guarantees that in case of really big demand B̃ the last seller has an opportunity to

extract the value out of the buyer.

Trading takes place over an endogenously defined period r0, t̄s, where t̄ will be defined as the moment

when the buyer stops buying. Over this interval, at every time t, a seller that is still endowed by a unit of the

asset decides to provide the liquidity at a specific price psptq or wait. The buyer decides to buy Cdt additional

units or stop buying, identifying t̄ “ t, where C is the throughput of the market. If the buyer purchases, the

transaction goes at the best available price pptq.54 The total mass of purchased asset is B “
şt̄

0Cdt. Denote

the set of sellers to sell at time t by Bt and sellers to have sold at time t̄ by B “
Ť

tďt̄ Bt .

The terminal utilities of the impatient inelastic buyer is

uB “ ´
ż t̄

t
pptqdbptq ´ rB̃ ´ Bs` ˆY.

The terminal utilities of the insider is

uI “ ´
ż t̄

t
pptqdbptq ` B ˆṼ .

The terminal utilities of the sellers are

us “ pppsq ´Ṽ q ˆ Its P Bu

Sellers are risk neutral. Hence at time t ă t̄, the seller s’s utility of submitting the best price pptq is

us,t “ ppptq ´EtṼ q ˆ Its P Btu .
54without loss of generality, assume that Cdt of sellers provide this price
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8.2 General Form

Using a similar set of arguments that we have seen in the previous section model, the terminal sellers if trade

will suggest the marginal cost of inelastic buyer price:

ppt̄q “ Y.

Denote the mass of sellers that sell at price pptq at time t by mppptqq.The total trading volume before time t

is

bptq “
ż t

τ“0
mpppτqqdτ, bpt̄q “ S.

The seller’s challenge entails balancing several trade-offs. First, delaying the selling decision reduces

the likelihood of a successful sale. Furthermore, postponing the decision can impact the probabilities of

selling to an insider versus an uninformed buyer. Finally, both the future equilibrium price, which affects

the expected profit gained from the buyer, and the conditional loss incurred by the informed seller who

continues to buy in the market, are subject to change.

Let us formalize the tradeoffs analyzing equilibria where the price is a non-decreasing function of trading

volume.55 To get the expected profit of sellers at every stage introduce pIptq and pBptq the endogenous

unconditional probability of informed insider buying the asset at time t.

pIptq “ Pr
”

Ṽ ą pptq
ı

ˆ pI,0, pIpt̄q “ pI,0 ˆ p1 ´ ΦV pY qq

pBptq “ Pr
”

B̃ ą bptq
ı

ˆ p1 ´ pI,0q, pBpt̄q “ p1 ´ pI,0q ˆ p1 ´ ΦBpSqq
(13)

The sum of pIptq and pBptq captures probability that at least bptq units of asset are purchased. The conditional

probabilities to face insider and buyer conditional on the continuing trading demand at time t:

pc
I ptq “ pIptq{ppIptq ` pBptqq

pc
Bptq “ pBptq{ppIptq ` pBptqq

(14)

Seller’s expected profit, contingent upon the presence of demand at time t, consists of the gain to sell an

uninformed buyer and the loss to the insider.:

πptq “ pc
Bptq ˆ

`

pptq ´V
˘

loooooooooomoooooooooon

Gain from Buyer

` pc
I ptq ˆ Erpptq ´Ṽ |Ṽ ě pptqs

looooooooooooooooomooooooooooooooooon

Loss to Insider

. (15)

55That might require extra work to set the necessary conditions for φV and φB that 9p is always non-negative. Since the conditional

probabilities of insider at given point of time may look nontrivial, it is not straightforward to show monotonicity for any set of the

distributions as it would be in the model with no insider.

60



The indifference between selling now and a moment later requires

9πptq “ πptq ˆ
´

pc
I ptqˆ

φV ppptqq
1 ´ ΦV ppptqq

ˆ 9pptq `

pc
Bptq ˆ

φBpbptqq
1 ´ ΦBpbptqq

ˆ 9bptq
˙ (16)

Alternatively, taking the derivative of (15) with respect to t:

9πptq “ 9pptq ´ 9pc
Bptq ˆV ´ ErṼ |Ṽ ě pptqs ˆ

ˆ

9pc
I ptq ´ pc

I ptq ˆ
φV ppptqq

1 ´ ΦV ppptqq
ˆ 9pptq

˙

. (17)

Note that in cases where the model parameters guarantee the presence of a monotonically increasing

equilibrium, with 9p remaining consistently non-negative, equation (16) also ensures that the profits of sellers

do not change sign as time progresses. Since the equilibrium is sustainable only if sellers receive non-

negative profits, this guarantees an increasing profit and also simplifies the Trade Condition to a requirement

of non-negative profit for the terminal sellers:

π̄ “ pc
Bpt̄q ˆ

`

ppt̄q ´V
˘

` pc
I pt̄q ˆ Erppt̄q ´Ṽ |Ṽ ě ppt̄qs ě 0. (18)

The violation of this condition, which might occur, for example, if the probability of facing an insider is

too high, resembles the conditions for the No Trade theorems (Milgrom and Stokey (1982), Tirole (1982)).

Once pc
I pt̄q goes to one, the loss to an informed trader dominates in (18), and discourages sellers to take an

opposite side in the subsequent trades. If the conditions hold and a solution exists then one can inversely

solve the system of ordinary differential equations backward characterizing the solution for any set of dis-

tributions and parameters.56 I will focus further on a specific distributional case that provides a tractable

closed-form solution,

8.3 Exponential distribution case

Closed Form Solution

Let us analyze the case when ΦBpbq “ 1´expp´βbq and, conditional on buying, ΦV pvq “ 1´expp´αvq,

V “ 0, that provides a tractable closed-form solution for the model. The solution is invariant up to shift in

reservation value V and respective distribution ΦV pvq. Also, we have set that the speed of trading is linear,

bptq “ C ˆ t,

56See details in the Appendix.
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and will analyze this case first by adding more degrees of freedom to it later. The linear trading speed means

that the same amount of the asset is traded per unit of time. Without loss of generality, one can rescale time

in terms of C so that t̄ “ 1, and C “ S .

The Trade Condition (18) simplifies to

π̄ “ πpt̄q “
e´Sβ p1 ´ pI,0qY

e´Sβ p1 ´ pI,0q ` e´Y α pI,0
´

α´1e´Y α pI,0

pe´Sβ p1 ´ pI,0q ` e´Y α pI,0q
ě 0

or

Y ě α´1W
ˆ

pI,0

1 ´ pI,0
ˆ eSβ

˙

,

where W stands for a Lambert-W function57. Note that the condition is tractable. Sellers will sell as long

as the maximum price they can “squeeze” out of the buyer is high enough to cover the costs related to the

average knowledge possessed by insiders (α´1) and the probability of facing them (pI,0). Additionally, eSβ

also requires that the probability of selling for the last sellers is not too small. In the Appendix, I provide the

comparative statics that shows a similar dependence for π̄ , which strictly increases with Y and α and strictly

decreases with S , β , and pI,0.

The next theorem characterizes the equilibrium under the exponential distribution assumptions.

Theorem 1. If Trade Condition is satisfied, there exists unique (strictly) increasing pptq satisfying (13)-(16),

pptq “ pc2ptq ` c1ptqq ` α´1W
ˆ

pI,0

1 ´ pI,0
ˆ e´pc2ptq`c1ptqqα`Sβ t

˙

, (19)

where

c1ptq “ e´Sβp1´tq ˆ π̄, c2ptq “
e´Y α`Sβ t pI,0

1 ´ pI,0
ˆ π̄.

c1ptq represents the price in the market in the absence of insiders. pptq is convex function. The sellers that

sell at time t earn expected profit

πptq “
π̄

e´Sβ tp1 ´ pI,0q ` e´α pptq pI,0
ˆ

´

e´αY pI,0 ` e´Sβ p1 ´ pI,0q
¯

. (20)

In the Appendix, I provide a formal derivation of the equilibrium dynamics. The core of explosiveness

lies in the term c1ptq, which captures the dynamics observed in the model without insiders. In this scenario,

later sellers require larger compensation for the risk of waiting. The second component, c2ptq, comes into

play when insiders appear in the market. It is also explosive but balanced out by a new component with the

Lambert function, which is not necessarily convex. The dominance of one over the other will depend on

57 Lambert-W function is the inverse of y ¨ ey, this is a monotonic, increasing and concave function over the non-negative region
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the model’s parameters, as discussed later. However, the combination of all three components is convex for

all valid parameters that do not violate the Trade Condition. Moreover, the first two derivatives of the price

with respect to time have a tractable closed form as well:

p1ptq “
eα pptqp1 ´ pI,0q

eα pptqp1 ´ pI,0q ` eStβ pI,0
ˆ pptq ˆSβ (21)

p2ptq “
Sβeα pptq ˆ

`

2p1ptq ` pptqSβ
˘

ˆ p1 ´ pI,0q ` αeStβ ˆ p1ptq2 ˆ pI,0

eα pptqp1 ´ pI,0q ` eStβ pI,0
(22)

Equation (21) shows that the growth rate of the price is primarily affected by Sβ , which represents the

speed at which the probability of selling to an uninformed buyer decreases. The probability of an insider,

pI,0, undermines explosiveness and, as the paper will discuss later, leads to a more considerable immediate

price jump rather than an increase in price convexity. It is important to note that since the multiplier next

to pptq in (21) is bounded from below, the price effectively exhibits an exponential growth rate, ultimately

causing convexity.

The initial price just after the first purchase of the asset is non-zero:

pp0q “ e´SβY ´ α´1e´Y α pI,0

1 ´ pI,0
` α´1W

˜

pI,0

1 ´ pI,0
ˆ e

e´Y α pI,0
1´pI,0

´e´SβY α
¸

(23)

As long as the trade condition is satisfied, the difference between the first two terms remains positive

and the price is strictly positive. Thus, the dynamics start with a jump in price. This is a common property

of the equilibrium for different distributions ΦV and ΦB that reflects the existence of a non-zero spread.

The model features a deviation of the price from its fundamental value. Conditional on the arrival

of an insider, the price discovery process occurs, and the price moves toward the new equilibrium price.

Assuming that the insider is interested in realizing the value of the trade as soon as possible, one can make

the assumption that once the purchase stops, the insider reveals the information to the public, justifying the

lack of reversal in this case. While remaining agnostic about the way information is released, one may focus

on the average reversal of the price in the long run:

Reversalptq “
pptq ´ ErV |bptqs

pptq
.

Characterization of the initial jump

In the first model without an insider, we observed that it features an initial jump to provide a non-zero

profit for the first seller and keep them indifferent from deviating to higher prices. The mechanics remain the

same in this model, but the adverse selection amplifies the effect. Therefore, the initial jump can be viewed
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as a component of the spread, reflecting both the market power of the sellers over the inelastic buyers and

serving as a compensation for apparent losses to informed traders. The comparative statics for the initial

jump are formulated in the proposition. The formal derivations are provided in the Appendix.

Proposition 2. The initial jump, pp0q, is non-negative and bounded from below by Y ˆ e´Sβ , which corre-

sponds to the jump in the no-insider case. It strictly increases as the probability of an insider, pI,0, goes up,

or as the average knowledge of the insider, α´1, increases. It strictly decreases as the supply of the asset

S goes up or the maximum price at which the buyer purchases, Y , decreases. It increases as the size of

the expected inelastic demand, β ´1, goes up. As the number of insiders approaches the no-trade region the

initial jump converges to Y .

It is worth mentioning that as the economy becomes more populated by insiders, the sensitivity of the

initial price change increases, and there is less room for explosiveness to occur. This is because the distance

between the initial price, pp0q, and Y shrinks, making explosive episodes less likely. One can think of events

such as earnings announcements, where there is a growing probability that market participants can either

learn or process the information marginally faster than others. This can lead to the prediction that explosive

episodes are less common than ordinary jumps in these cases.

Characterization of the price path

In the provided solution, all price paths are explosive, but there should be a way to compare the explo-

siveness of these events. The natural candidate for this comparison is some level of convexity in the price

path. I will use the average curvature of the price path, denoted by κav, which captures the average second

price derivative over the possible price path:

κav “
ż 1

0
p2ptqdt.

The following proposition summarizes the findings regarding it in the equilibrium.

Proposition 3. The price pptq is a strictly increasing and convex function. It increases point-wise as the

probability of an insider, pI,0, increases. In the extreme case of no insiders, we have:

pptq “ e´Sβp1´tq ˆY.

In the limit case where the market is primarily populated by insiders but the Trade Condition is not violated,

pptq approaches a linear curve:

p1ptq “ α´1Sβ ` Op1 ´ pI,0q.

64



The average curvature of the price path strictly increases as long as the probability of insiders decrease.

The result suggests that the level of explosiveness after the initial big jump, captured by the average

curvature, decreases as the share of insiders grows. Moreover, the price impact also becomes almost linear

after the jump. This result is interesting because the price impact in this context has a different modeling

structure compared to a significant portion of market microstructure models where the price impact is defined

by the strategy of hiding behind the noise traders (e.g., Kyle (1985)). In those models, linear price impact is

often observed, but the situation here is quite the opposite from the perspective of sellers (market makers).

In the limiting case of my model, they primarily trade against informed traders and, on rare occasions, face

inelastic buyers. This model could be a good framework for studying post-jump drifting.

Numerical Example

Let us begin with a numerical example that aims to produce a realistic output consistent with the average

observation from the data. We set the maximum marginal cost of the buyer to be 15%, limiting the explo-

sion’s size in terms of numbers. The probability of an insider is 2%, with an average possessed knowledge

of α´1 “ 10%. We set the supply to S “ 15 and β “ 0.35. The simulated paths for price, pptq, and profit,

πptq, conditional on ongoing demand, are illustrated in Figure 16. These paths exhibit the desired explo-

siveness. The initial price jump for this specification is approximately 20 basis points, with pp0q “ 0.23%.

At time t “ 0.5, the price only reaches 2.62%, but subsequent demand leads to a significant increase in the

price. Figure 16 displays the probability of ongoing demand and the changing conditional probability of

an insider. In this parametrization, the probability of an insider significantly increases with rising demand.

This is necessary to match the appropriate relative reversal, as reported in Figure 16, which varies between

14% to 22%.

Y α pI,0 β S V

15% 10 2% 0.35 15 0

Next, let us relax the parameter α “ 80, allowing for larger probabilities of an insider, consistent with

the Trade Condition, to analyze established facts regarding the jump size and curvature of the price in

the limit cases. It is worth noting that by doing so, we significantly reduce the knowledge of the insider,

and unless the probability of an insider is exceptionally high, it means that as time approaches t “ 1, the

conditional probability of an insider approaches zero. This dynamics is illustrated in Figure 18. The figure

also highlights the non-trivial dependence of the probability to sell on pI,0, as well as the potential non-

monotonic nature of conditional probabilities when selling to an insider or an uninformed buyer.
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The price dynamics confirm the theoretical findings from the previous subsection. Starting from the

no-insider case, as indicated by the red line, the price exhibits pointwise increases as the probability of an

insider rises. The most dramatic change occurs for the immediate jump, pp0q, which is a reaction to the

intention to buy. In the extreme scenario with 99.99% of informed buyers, indicated by the black line, the

price would jump by 9%, which is significantly more than the ex-ante expected knowledge possessed by the

insider. This reflects the revealing nature of the intention to buy, as seen in the No Trade theorems. As the

probability of an insider approaches one, the price path also loses curvature, resulting in an almost linear

price path, indicating a constant price impact.

As the probability of an insider increases, the sellers’ profit naturally decreases, eventually converging

to almost zero at all times. Conversely, the relative reversal of the price change shifts from complete reversal

in the no-insider case to no reversal in the case where almost all participants are insiders. Furthermore, the

relative reversal generally increases as the magnitude of the price rises.

Analysis of varying proportions of insiders in the population might lead to the incorrect conclusion that

there exists a tradeoff for the model: one might observe either pronounced explosiveness (as in the case

when pi,0 is small) or a persistent change in the price (as in the case when pi,0 Ñ 1). However, this is not

the case; as for this specific specification, we intentionally relaxed the knowledge possessed by insiders to

satisfy the Trade Condition. In this scenario, the significant demand reveals the nature of the buyer in a way

that the updated belief pIptq decreases as considerable buying pressure is realized. This behavior is depicted

in the right plot of Figure 19, where pIptq exhibits an inverse smile shape.

To illustrate that in the model, the possessed knowledge parameter takes care of the false tradeoff, let us

examine a specification where the parameters replicate the base case but instead of altering the probability

of an insider, I modify parameter α´1. Figure 25 demonstrates that the sellers’ profit and relative reversal

change significantly while there is minimal alternation in the price path when α´1 changes from 0.01 to

0.12. The interpretation is that if the probability of an insider is relatively tiny, the sellers provide liquidity

in a manner close to how they would act under the assumption of no insiders. The insider’s presence for the

initial sellers in the "queue" is perceived as a minor risk, and thus, there is no need to impose a significant

bid-ask spread, and little initial jump is observed. As demand flows into the market, the probability of an

insider increases, thereby balancing out the reversal and leading to persistent change in the price.

8.4 Discussion and possible extensions

The model simplifies many aspects of trading for tractability and to emphasize the core mechanism gener-

ating explosion. That is the expectation of inelastic demand. The assumption can be alternatively viewed as
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Figure 16: Price, pptq, profit, πptq, and reversalptq

This figure illustrates the price, profit, and (expected) relative reversal path conditional on parameters set in Section 8.3.
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Figure 17: Probability to sell, pIptq ` pBptq, and probability of insider, pc
I ptq
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Figure 18: Price, pptq, profit, πptq, and reversalptq

This figure illustrates the sensitivity of price, profit, and relative reversal to the probability of an insider, which is captured by pi,0.

The knowledge possessed by insider α´1 “ 1.25% is relaxed to avoid violations of Trade Condition. The other parameters replicate

the suggested parameters from the numerical example in Section 8.3.
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Figure 19: Probability to sell, pIptq ` pBptq, and probability of insider, pc
I ptq
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the existence of correlated noise trading in the demand. In the models, this assumption is taken to extreme,

though, there are ways to expand and refine it for more tractability.

Partially Uninformed Trader: Instead of a fully inelastic buyer, one could introduce a partially unin-

formed trader who has some information about the probability of the asset. This would introduce a non-

binary type of reversal, potentially adjusting the filtering problem in the model. With a limited supply of

the asset, a similar explosive mechanism as in the current model might occur, but with a more considerable

initial jump.

Noise Traders: To control the trading speed, one could add noise traders who randomly enter the market

and are willing to trade at the current price, providing (1) some competition to sellers and (2) some chances

for hiding behind them for the buyers. This would incentivize the buyer to buy slowly and avoid ad-hoc

assumptions on the throughput of the market system. To balance this out with an incentive to buy at a

non-zero speed, the model could include a cost for the buyer associated with carrying non-trading.

Introduction of informative signals To enhance the model’s price dynamics resemblance to actual data

and incorporate some noise around the explosive path while also revealing the fundamental value Ṽ , one

could introduce public signals about V that arrive at a given frequency. This change would incentivize

the insider to trade faster and provide the reversal after time t̄, in accordance with the newly incorporated

information. Including public signals would add an element of realism to the model, as it aligns with the

way real-world markets react to information and news releases.

9 Explosions around short interest fluctuations

9.1 Discussion of mechanism

The model provides clear predictions regarding the underlying mechanisms that may contribute to the oc-

currence of explosive events. First, it highlights the importance of having an ex-ante expectation of inelastic

demand. Second, it emphasizes the significance of limited asset supply in the market. Third, it underscores

the role of actual buying pressure as a catalyst for these explosive occurrences. To empirically test this

mechanism, one may seek events that impact these critical factors. Simultaneously identifying events that

affect one of these ingredients while maintaining sufficient statistical power during testing is a challenging

endeavor. For instance, there is evidence indicating that index-inclusion events appear to predict explosive

events.58 Nevertheless, due to the infrequency of such events and the limited power to detect explosive

occurrences, this test does not offer sufficient statistical strength for a conclusive judgment. In this section,

58The analysis will be added later to the Appendix of the paper.
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I propose an event that is likely to influence all the ingredients in a manner that increases the likelihood of

explosive events. These are short interest dissemination. Moreover, this event provides a substantial number

of observations, facilitating empirical testing of its relevance.

I concentrate on the events surrounding the public disclosure of short interest data, which currently

follows a pre-scheduled bi-monthly pattern when the Financial Industry Regulatory Authority (FINRA)

releases data for the most publicly traded assets, including the individual stocks examined in this paper.

Historically, this disclosure has been a significant source of public information regarding the extent of short

selling activity in these assets. Despite the emergence of other sources of short interest data from private

vendors in recent years,59 FINRA’s data still possesses robust predictive power for stock returns.

Within the context of stock explosiveness, the release of this data is expected to impact various critical

factors simultaneously. It influences the expectations of inelastic demand, the available supply of the asset

in the market, and the likelihood of insider trading activity. Furthermore, this collective impact suggests

that the release of data indicating an unusually high level of short interest should, at the very least, raise the

probability of an explosion up.

To illustrate this, consider that a substantial outstanding short interest ultimately prompts those holding

these positions to close or cover them, potentially increasing the probability of an inelastic surge in buying

pressure. This heightened demand, under such circumstances, is often referred to as a "short squeeze event."

Additionally, in the case of shorting, the supply of the asset is likely to decrease, as the lenders who have

loaned their stocks may be less inclined to lend more. Lastly, it is widely believed that short interest is

often held by insiders, making them more likely to have established negative positions prior to the data’s

release, potentially incorporating the information into the stock price and reducing the immediate entrance

of insiders into the market. Altogether, this suggests empirical testing to examine an increase in explosions

up in stocks with high short interest following the public release of data.

Building on previous findings that heavily shorted stocks tend to yield negative returns after announce-

ments, a mechanical factor comes into play that can potentially reduce the likelihood of detecting an increase

in stock explosiveness up while enhancing the detection of explosiveness down. This effect arises because

a larger proportion of observations result in negative returns. Increase in explosions down is also consistent

with an increase of crash-probability studied in Callen and Fang (2015).

In this section, we will demonstrate that despite this influence, the incidence of upward explosions still

increases, underscoring the robustness of the mechanism linked to changes in beliefs about market primi-

tives. Furthermore, by implementing an event-study-type analysis, examining explosiveness just before and

59See Kim et al. (2022) for discussion of private-sector short itnerest data.
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just after dissemination, we will find that short interest appears to be the only economically and statistically

significant factor in predicting subsequent explosiveness. Moreover, other static return characteristics react

more moderately to the information inflow, emphasizing the importance of changes in time series dynamics

rather than solely distributional properties of the returns.

9.2 Data

The firm-level short interest data originates from FINRA releases. This dataset begins in 1973 and comprises

monthly reports before January 2007. Starting in 2007, short interest was collected and disseminated twice

per month. The data was made available to the public eight business days after collection, resulting in an

average of 10-11 business days between dissemination dates. I accessed this data through the Compustat

North America database, which was made available via WRDS (Wharton Research Data Services).

In line with previous research on short interest (e.g., Asquith et al. (2005); Boehmer et al. (2008),

Boehmer et al. (2008), Boehmer et al. (2010)), the primary measure of short selling is the short interest ratio

that is the percentage of total shares outstanding:

SIRs,d “
Shares Shorteds,d

Shares Outstandings,d
,

where d refers to the day following the dissemination of the short interest date 60. Previous literature on short

interest has demonstrated that the SIR is significantly influenced by firm characteristics, industry factors, and

prior stock performance. To mitigate the impact of these predictors, I employ an alternative short-selling

measure called partialled out short interest ratio, SIRpo
s,d . This measure represents the residual obtained from

the following cross-sectional regression:

SIRs,d “
ÿ

X“Size,BtM,IV,Mom,ST Rev

5
ÿ

q“1

βX ,qIX ,s,q,d `

`
ÿ

f PMkt,HML,SMB

5
ÿ

q“1

γX ,qBetas,q,d, f `
ÿ

iPIndustries

ωiIi,s,d ` us,d ,

SIRpo
s,d

def
” us,d .

(24)

Here, IX ,s,q,d is an indicator of a firm s being in quintile q by firm characteristic X on day d, where X

can represent stock market equity, book-to-market ratio, idiosyncratic volatility, momentum, or short-term

reversal. Ii,s,d represents an industry control, and Betas,q,d, f is an indicator of the firm s to be in quintile q by

factor f exposure on day s. All variables, except for momentum and last-month return, have a 31-day lag.

60the short interest is released after the regular trading hours. Hence, the information is incorporated into price on the next

business date.
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For more details and a summary of the variables, please refer to Table 16. To account for the informational

content of the short interest disclosure, I will also utilize the changes in both measures since the last reporting

date.

∆SIRs,d “ SIRs,d ´ SIRs,d´1{2 month

∆SIRpo
s,d “ SIRpo

s,d ´ SIRpo
s,d´1{2 month

(25)

The partialled out difference, ∆SIRpo
s,d , more accurately captures the surprise in the change of SIR for the

stock and fits better for estimation of informational content on the dissemination date. (see e.g. Hanauer

et al. (2023))

Table 16 represents the summary on all four measures over the sample of stocks for which explosiveness

is estimated over the subsequent 10 days interval. It is worth noting that the sample exhibits a slight bias

toward more liquid and larger stocks compared to the sample used in short interest literature, as we require

the stocks to be consistently traded in TAQ over the estimation period. In this sample, the median and

average Short Interest Ratio (SIR) are 3.17% and 5.16%, corresponding to 4.74 and 6.66 days-to-cover61.

The 90th percentile of SIR and SIRpo are 12.29% and 5.22%. Additionally, the 90th percentile of the change

in SIR, SIRpo, and days-to-cover are 0.64%, 1.45%62, and 0.84 days, respectively. Since SIR is heavyFor

most of the a

9.3 Empirical Findings

Returns after the dissemination

Let us firstly establish the relationship between the short interest ratio (SIR) and explosiveness. I begin

by examining the probability of a market explosion over 10-day periods starting from one of the next days

after the release of short interest data. In line with the short-interest literature, I categorize a stock as having

high SIR if its SIR falls within the top decile for a given date. This categorization serves as the treatment

variable in the regression analysis.

Before delving into the explosiveness analysis, we must assess the difference in average returns between

high-SIR stocks and other stocks over the same 10-day interval under investigation. Table 17 presents

several results regarding the predictive power of this treatment effect on the abnormal average returns of

these stocks. The first column reports the estimates from a simple regression analysis, indicating that high-

SIR stocks exhibit, on average, log-returns approximately 66 basis points lower than those of other stocks
61Days-to-cover is defined as SIR normalized by the average 31-days lagged average monthly turnover
62The fact that the partialled out short interest is more volatile suggests that individual short interest levels are quite persistent,

and the aggregate movements used for adjustment introduce additional variation in the measure
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Figure 20: Log-Return for top-decile SIR vs Other Stocks

This plot shows the average 10-day log-return following the dissemination of short-interest data. The blue dots correspond to

the equally-weighted average return of stocks with reported SIR in the top decile, while the red dots correspond to the equally-

weighted return of other stocks. The 95%-confidence interval around the averages is based on standard errors clustered for firm-year

interaction. To be included, the stock must have a closing price of at least $5 thirty days before the disclosure and a good price in

the TAQ dataset over the 10-day interval, allowing for the estimation of explosiveness measures.
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Figure 21: Explosion up for top-decile SIRpo vs Other Stocks

This plot shows the estimated probability of explosion up (in percentage terms) following the dissemination of short-interest data.

The blue dots correspond to logit-based estimate to be explosive up for stocks with reported SIRpo in the top decile, while the

red dots correspond to other stocks. A stock is considered explosive up if we detect an explosion up according SADF procedure

with k “ 1 and r “ 0.2 over at least one of the five subsequent (overlapping) 10-day intervals following the disclosure date. The

95%-confidence interval around the averages is based on standard errors clustered for firm-year interaction. To be included, the

stock must have a closing price of at least $5 thirty days before the disclosure, and have a good price in TAQ dataset over the

10-days interval allowing estimation of explosiveness measure.
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during the same period. The following two columns confirm the robustness of this result, accounting for risk

adjustment according to CAPM and FF3 adjustments. This robustness extends to other factor adjustments,

although these specific adjustments align with those used in estimating explosiveness.

Columns 4 to 6 present the results of the same least square regressions, augmented by a set of controls

and fixed effects that will be used in the explosiveness analysis. These fixed effects include factors such

as the stock and date interacted with industry. The controls use both a set of standard continuous variables

that capture firm characteristics, such as log-size, book-to-market ratio, liquidity, volatility, and institutional

ownership. Additionally, a set of dummy variables is used to capture non-linearity in the dependence. This

includes quintile categorization based on size, volatility, liquidity, and exposures to market return, SMB-

portfolio return, and HML-portfolio return. Additionally, controls include previous returns, which capture

momentum, as well as the returns from the previous month and the most recent changes in assets and the

firm’s operational profitability.

Remarkably, even with this extensive set of controls, the average return and abnormal returns remain

statistically significant and economically negative, ranging from -9.14% to -7.05% in annualized terms.63.

The table reports only continuous variables and includes the significant quintile-based dummy variable for

clarity. In the sample, following the dissemination of short interest and after controlling for fixed effects,

larger, with lower book value, and more liquid stocks had significantly lower returns64. This highlights the

necessity to control for the factors when performing the explosiveness analysis.

This finding remains consistent across the years of observation. Figure [20] illustrates the difference

in average returns between heavily shorted and other stocks for each year, with 95% confidence intervals

based on standard errors clustered by firm-year interactions. These results corroborate the predictive power

of short interest, as documented previously.

Explosiveness Up for heavily shorted stocks

Now, shifting our focus from analyzing the reaction of returns to short interest, let us delve into the

association between explosiveness and short interest. More specifically, we will examine the following

specification:

Eα,up
s,d “ β ˆ Its is in top 10% by SIRs,dud `Controlss,d ` εs,d , (26)

where Eα,up
s,d represents an indicator that signals the detection of an explosive up episode after date d. To

ensure a more precise estimate, we will aggregate the explosiveness data over multiple daily estimates, effec-

63use p1 ` rq252{10 ´ 1 to annulize the values from 10-days interval
64A higher quintile of the Amihud Liquidity measure indicates a higher price impact for the stock
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tively utilizing G overlapping 10-day intervals. For this section, we primarily use G “ 5 as our specification.

This means that Eα,up
s,d “ 1 if the SADF procedure detects an explosion over one of the intervals, such as

rd,d ` 9s, rd ` 1,d ` 10s, and so on, up to rd ` 4,d ` 13s. This approach must be more accurate and must

mitigate the potential noise that may arise immediately following the data release. Nevertheless, the results

remain stable when using a similar estimate based on only one, two, or three 10-day intervals, even with

greater magnitude in absolute terms. Details are provided in the appendix.

Figure 21 captures the summary on explosiveness up by year. For every year65, we estimate logit-

model with treatment of being in top SIRpo decile66 and provide 95%-confidence interval based on year-firm

clustered standard errors around the estimate. Consistently, in nearly all years, the probability of upward

explosiveness is significantly higher for stocks in the top decile of short interest. The difference ranges from

2.50% in 2005 to as low as 0.64% in 2014. The finding is robust to the definitions of explosiveness, selected

significance level67, across various risk-adjustment schemes and selected lag-order for SADF estimates.

Table 19 presents a more comprehensive analysis of the relationship between upward explosions and

being a high-SI stock, using the linear specification with date-industry and firm fixed effects, along with a set

of controls previously discussed for returns. According to Panel A of the table, in the overall sample, using

a linear model, heavily shorted stocks are .53% more likely to be identified as explosive at a 1% significance

level after the announcement. This likelihood increases to .60% when we use partialled out SIR to identify

the most explosive stocks. The effect generally slightly decreases when we use detected explosions based

on risk-adjusted price data. Alternatively, using a logit fixed effect model where the probability of detection

is used as the dependent variable, we find that the probability of detection changes by 9-11% for heavily

shorted stocks compared to other stocks. The coefficients are all statistically significant at the 1% level.

Importantly, the high short-interest indicator emerges as one of the strongest predictors, both in terms of

statistical significance and economic impact, for explosiveness up following the dissemination date.

The other most significant controls, as reported in Table 19, include size, liquidity, institutional owner-

ship, and idiosyncratic variance, along with previous returns, namely momentum and short reversal. No-

tably, these controls highlight important factors affecting explosiveness detection. For instance, the relation-

ship between previous returns and explosiveness suggests that stocks are less likely to experience explosive

movements if they have already grown significantly over the previous year, particularly if this change oc-

curred earlier. This observation aligns with the idea that stocks tend to undergo reversals, resulting in a

lower probability of detecting upward explosions.

65I miss 2003, since the year is incpomplete.
66at this point we do not use controls, they will be used in later specifications
67up to significance level 5%
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Size appears to be negatively correlated with explosiveness detection, with larger stocks showing an

even stronger decrease in the largest quintiles. Controlling for firm effects, this could be partly attributed to

the same reversal narrative, but it likely reflects increased market attention, making it less likely for these

stocks to separately exhibit explosive dynamics. Economically, the size effect is the largest causing almost

2% drop in explosiveness up following detection if taken one standard deviation of it keeping everything

else equal.

Moreover, the most liquid stocks with greater institutional ownership tend to be less prone to explo-

siveness. This could be attributed to the ease of shorting in the presence of institutional investors, which

can act as stabilizing forces for the explosions. On average, stocks with a history of high idiosyncratic

volatility are more likely to exhibit explosiveness, possibly reflecting uncertainty about their underlying

fundamentals. Despite the continuous variable’s statistical and economic significance—causing an approx-

imate 0.30% increase in explosiveness for every one-standard-deviation rise—this relationship is intricate

and nonlinear. The non-linearity is in part offset by the negative dummies associated with being in the IV

quintile portfolios.

To delve into this in more detail, let us consider Table 20, which reports coefficients on idiosyncratic

volatility, along with interactions with the high short interest indicator, while keeping all other controls and

fixed effects in place. The top quintile of stocks by idiosyncratic volatility is expected to be around 0.30%

higher due to the continuous variable. However, the expected impact is approximately the same when

considering the controlled Q5 ´ IV coefficient, which indicates being in the top 20% of volatile stocks.

Furthermore, the interaction with high short interest rates is also non-linear, with the largest effect varying

from .80% to 1.3% across specifications, occurring for the most and least volatile stocks. This non-linear

dynamic is related to two mechanisms that influence the power of explosiveness identification. On one hand,

higher volatility makes it more challenging to detect explosive movements, as it requires greater statistical

power to reject the null hypothesis. On the other hand, more volatile stocks are characterized by greater

uncertainty about their fundamentals, increasing the potential for explosiveness to emerge.

Explosiveness Up following dissemination of changed SI

The previous specification demonstrates that short interest data predicts explosiveness up, in line with

the model’s mechanism prediction, despite the fact that, on average, stocks tend to go downward. The next

specification aims to capture the informational content delivered on the dissemination date itself. In this

specification, we use the change in short interest ratio as the explanatory variable and compare the detection
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of explosiveness measured just before and just after the dissemination date:

Eα,up
s,d`1 ´ Eα,up

s,d´L “ β ˆ Its is in top 10% by ∆SIRs,dud `Controlss,d ` εs,d . (27)

Here, L represents the lag before the dissemination date. The idea behind this specification is that if the

stock properties do not change significantly over L days, we should observe changes in the model parameters

following the public dissemination of information. The choice of L involves a trade-off. Selecting a large L

may introduce a reverse causality problem because previous explosive episodes can lead to increased short-

ing of the stock. Selecting a smaller L results in increased overlapping between the intervals for detecting

explosions with Eα,up
s,d`1 and Eα,up

s,d´L, potentially reducing the captured effect. However, small overlapping is

less likely to be problematic, as it is empirically more challenging to detect explosions toward the end of the

estimation interval than at the beginning.

Finally, given the nature of short interest data, which is the short interest settled on the collection date,

one might expect some change in explosiveness immediately after the collection if market participants have

alternative methods to estimate short interest data rather than waiting for the dissemination date. This could

potentially weaken the derived results.

Taking into account these concerns, we present multiple specifications with varying values of L (e.g.,

7, 10, 12 days), with the primary specification using L “ 10. Similar to our previous analyses, we examine

various aggregations of explosiveness detection based on subsequent dates, denoted as G. G varies from one

(using a single interval) to five, with the primary specification using G “ 3 intervals. The choice of L “ 7 is

motivated by estimating explosiveness immediately after the collection date, 7 days before the dissemination

of information to the public, to address the reverse causality concern. On the other hand, L “ 12 allows for

zero overlapping between underlying estimation periods for Eα,up
s,d`1 and Eα,up

s,d´L with G “ 3.

Table 21 reports the first set of the results on the explosiveness on 27 for the four type of aggregations

of explosiveness (G) and the three primary lag levels L. As the explosiveness measure, the detection at

1% significance level with k “ 1 and CAPM-adjustment for price is used. Consistently for all specification

explosiveness up is greater after the dissemination of data on the top change in the short interest. The

increase in probability is measured by .30% when using just one 10-day interval and slightly increases when

using more intervals to find an explosion.

Importantly, in the difference based specification High SI appears to be the only consistently signif-

icant and economically meaningful coefficient for change in explosiveness up. Table 22 provides results

on both explosiveness down and explosiveness up change around the dissemination. As before, I provide

results for three specifications based on different adjustment. The table contains information on regression
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coefficients of all continuous control variables and the few quintile based control variables that appeared

significant at least in one of the specification. Focusing on the last three columns, we can see explosiveness

up does not have other factors that would appear significant in more than one coefficient, size, shortterm re-

versal, momentum , idiosyncratic variance do not predict any difference and have economically neglectable

coefficients. That allows to interpret the coefficient as the reaction of explosiveness up specifically to the in-

formational content in the short interest dissemination. Explosiveness grows up consistent with the narative

developed in the model: a public signal of increasing probability of inelastic demand and lower probability

of insiders buying the asset.

Finally, in this section, we do not closely study explosiveness down. The reason for this is that it

is challenging to separate the mechanism related to liquidity from the informational content in the data

studied before. Previous literature has shown that negative information from short interest tends to not be

incorporated immediately but rather up to 30 days later (e.g., Hanauer, 2023), indicating a gradual process.

My results are consistent with this finding, suggesting that the transition might also happen explosively.

The first three columns of Table 22 also show that the informational content at the dissemination of

short intest increases the probability of explosiveness down by .52% to .73%, with larger magnitudes than

explosiveness up. The results are robust to alternative specifications (see the Appendix for other specifica-

tions involving explosiveness down), suggesting that at least partially, the price discovery following the data

disclosure happens explosively. Nevertheless, other factors such as short-term reversal and idiosyncratic

volatility contribute to the regression, indicating that the mechanism driving explosiveness down around the

dissemination is more complex than the one attributed to explosiveness up.

Static Return Moments following dissemination of changed SI

The open question pertains to the extent to which the detected explosiveness is influenced by factors

other than the properties of returns and informational content. An alternative hypothesis could be that

increasing short interest precedes significant firm news or stock turmoil. To address these concerns, we have

already compared explosiveness just after the data collection date to the period following dissemination. If

short interest precedes news, it is more likely that the news would be closer to the short interest settlement

date rather than 8 business days later. To investigate these questions further, let us examine how the statistical

moments of high-frequency returns change in the sample following the dissemination.

Table 23 provides the averages of the realized empirical moments within the 10-day interval used for

SADF estimation. This table includes heavily shorted stocks indicated by the top-decile change in partialled

out Short Interest Ratio (SIRpo) and all other stocks. Despite the substantial change of -0.28% in the average
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return for heavily shorted stocks following the dissemination, the reaction of all other moments is relatively

modest. For instance, volatility and the absolute values of quintiles for intraday returns show an average

change of less than half of basis point for both heavily shorted and other stocks.

The extreme returns, which often represent overnight returns in the sample, change slightly, primarily

on the minimum side. The average minimum captured return decreases by 8 basis points for heavily shorted

stocks versus 1 basis point for other stocks. The maximum return goes up by 4 basis points for heavily

shorted stocks compared to 2 basis points for other stocks. This results in slightly smaller skewness and

larger kurtosis in the sample. However, all these changes are economically small.

When we control for firm characteristics and include the same fixed effects used in the analysis of returns

and explosiveness, the results remain consistent. Table 24 reports the coefficients for the indicator of being

in the top decile by the change in partialled out Short Interest Ratio in the fixed-effect regression. The

economic magnitudes are similar to those in the unconditional analysis. There is a statistically significant

increase in intra-period volatility, with stocks being 0.20 basis points more volatile following the disclosure

of high short interest. This increase may be mainly attributed to the decline in minimum returns by 8

basis points and the rise in maximum returns by 3 basis points. While these results are consistent with the

appearance of explosiveness, which itself can increase volatility, the changes are relatively small.

The 10% and 90% quintiles of returns actually mildly decrease in absolute terms, skewness decreases

by 5.7%, while kurtosis increases by 2.82. The fact that most of the estimated coefficients are statistically

significant suggests that the moments of high-frequency returns are quite stable after controlling for aggre-

gate fluctuations and other firm-specific factors. However, it is unlikely that there is a fundamental change

in the moments that would substantially impact the detection of explosiveness.

On the other hand, the average increase in the probability of explosiveness up and down is more substan-

tial. The increase in the probability of explosiveness is noteworthy when considering unconditional changes.

Over the 10 days before and after the dissemination of short interest, the probability of explosiveness in-

creases by approximately 0.31% for stocks in the top decile of SIR change and 0.42% for other stocks. The

average unconditional probability of explosiveness before dissemination is 2.58% and 3.10%, which trans-

lates to around a 12% increase in explosiveness. The fixed-effect regression results were discussed in the

previous section and have approximately same magnitude (see Table 21).

This underscores the importance of the informational content of short interest dissemination for explo-

siveness. It is unlikely that the information about high short interest precedes fundamental changes in the

static return properties, except for predicting subsequent negative returns. This is consistent with the idea

that short interest data does not just influence beliefs about where the stock will go, but also who will likely
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trade in the future, creating the conditions for explosive transitional dynamics.

10 Monte-Carlo Simulations

10.1 Empirical challenges

The accuracy of the SADF test relies on the speed of convergence to the asymptotic distribution mentioned in

equation (6). The underlying assumptions necessary for achieving this asymptotic distribution are relatively

mild, such as strict stationarity and ergodicity in the error terms of equation (5). However, as documented

in the econometric literature, finite sample unit-root tests are susceptible to both type 1 and type 2 errors

(e.g., Elliott et al. (1992), Ng and Perron (2001)). This susceptibility may be exacerbated by the fact that

innovations in individual stock returns exhibit high skewness and fat tails.

Furthermore, the presence of stochastic volatility, a common assumption in stock return models, can

pose challenges for the size and power of unit root tests (see e.g., Zhang et al. (2013)). Specifically, it

introduces a positive bias toward rejecting the unit root hypothesis in finite sample sizes when using the

ADF procedure. This bias is particularly pronounced when stochastic volatility approaches non-stationary

or non-stationary behavior.

If stock prices followed a continuous path, as often modeled in jump-diffusive processes, increasing the

frequency of time stamps could address many obstacles by expanding the sample size. However, in practice,

a trade-off arises when selecting time intervals for analysis. More frequent time-stamps introduce additional

microstructure noise into price fluctuations, while excessively long intervals may exacerbate finite-sample

issues. In this paper, I strike a balance by choosing a 5-10 minute intervals. Longer intervals may be suitable

for detecting long-term bubbles, but this would require a separate investigation beyond the paper’s scope.

Another challenge in the analysis involves dealing with overnight returns, which have markedly different

statistical properties than 5-minute intraday returns, featuring roughly five times larger standard deviations.

These returns could be seen as scheduled jumps, leading to a naturally higher probability of explosive

detection. Therefore, it is essential to investigate the influence of jump events on explosive detection. Finally,

the presence of standard drift and autocorrelation can impact the frequency of explosive event detection.

10.2 False Positive

To evaluate test size and power, I perform simulations using finite samples of a size comparable to the periods

discussed in Section 3. These simulations will utilize data generating processes as described in equations (1)

and (5). To explore the impact of the mentioned issues, I conduct multiple simulations: one with Gaussian
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error terms that mirror the autoregressive structure found in actual data and match the moments of realized

returns, a second with bootstrapped error terms to align with the actual data distribution, and a third in which

data is generated incorporating stochastic volatility.

To be more specific, I undertake three types of simulations employing normal, independent, and identi-

cally distributed error terms as outlined in equation (5). To create realistic processes, I begin by estimating

autoregression parameters in accordance with equation (5), extracting both the autoregression coefficients

and residuals. The moments of simulated Gaussian terms are taken from the empirical moments of the

residuals. Subsequently, I conducted Monte Carlo simulations. In these simulations, I randomly select68 the

coefficients based on their empirical distribution within a given year or set them as constants. To assess the

impact of negative autocorrelation, I set these constants to either zero, which transforms the process into a

standard random walk, or the median values of the estimated autocorrelations, which are negative.69

The results of 19,000,000 simulations for each specification ( 100,000 simulations per year) can be found

in the first three columns of Table 25. To check the result if the model is misspecified I also estimate it with

one additional or one less lag. The results are reported for 1% significance level. The default lag-order is 2.

In the Random Walk (RW) column, it becomes evident that in finite samples, the test size is only

marginally smaller than the theoretically expected detection rate of 0.5%. This implies that to be more

precise, the quantiles used for the test could be adjusted slightly lower, i.e., relaxed. This observation holds

true even when we introduce constant (negative) autocorrelations into returns. However, as soon as we

introduce randomness into the autocorrelation terms together with a random drift, which mirrors what is

observed in the data, we observe a rise in false positive detections. This phenomenon may be attributed

to the presence of a strong drift or significant autocorrelation terms in the data, which, in finite samples,

occasionally leads the test to interpret it as explosiveness mistakenly. Not surprisingly, the more substantial

effect on false detections occurs for downward explosiveness since extreme negative autocorrelations are

more common. Finally, in the Overnight specification, where I introduce a scheduled overnight jump and

draw the random autocorrelation terms, the false detection rate is close to targeted level of .5%. For this

specification, the simulated intraday and overnight returns are drawn from the Gaussian distributions fitted

into the actual intraday and overnight returns.70

The effects become more pronounced when we deviate from normality and generate return innova-

tions with fat tails based on their empirical distribution. In the first column, assuming a random walk with

68I randomly draw the set of parameters tα,φ j, j “ 1, . . . ,ku with replacement.
69For example, in Table 25, where k “ 2, the values are -0.07 and -0.03.
70It is enough to estimate the average and standard deviation for the samples and draw Gaussian returns with respective parame-

ters.

82



bootstrapped errors leads to an increase in false negative values to slightly over 1%. Not setting the au-

tocorrelation terms to median values (which produces nearly identical results) let us concentrate on two

autoregression specifications. In one scenario, we simulate autocorrelations terms while setting the drift to

zero, while in the other, we simulate both the drift and the coefficients. This enables us to determine which

factor, drift or autocorrelation, has a more significant impact on the likelihood of detecting explosions. Sur-

prisingly, autocorrelation alone does not appear to introduce detection issues, whereas the introduction of

drift may result in an additional 35 basis points in false detections. Finally, to make our simulations closely

resemble actual data, we introduce scheduled overnight jumps into the returns based on the distribution of

actual overnight returns. This results in a slight increase in false positive detections by a few basis points.

The final specification addresses the concern that return volatility may exhibit clustering, which could

potentially elevate the probability of localized explosions. Intuitively, if a sequence of low-volatility returns

is followed by a clustered episode of high volatility, there is a greater likelihood of multiple successive re-

alizations in one direction. This can be easier to interpret as an explosive term when fitted in the rolling

procedure. To explore this, I estimate the Heston model using the GMM method in accordance with El-

lickson et al. (2018), and then conduct simulations of paths based on the model while preserving the AR

coefficients estimated in the market. As observed, this indeed increases the probability of Type I error to

approximately 1.2%.

In general, all the discussed specifications exhibit robustness when extra lags are included in model

estimation. However, using fewer lags tends to result in a lower likelihood of detecting explosions. The

primary reason for this is that the absence of negative correlations in the returns redistributes them to the

explosive term.

Finally, to emphasize the role of time-series dynamics in the detection of explosiveness, as a separate

specification, I use a procedure that preserves the static return distributions from the actual data sample over

the estimation period and autocorrelation of high-frequency returns. Instead of drawing the random sample

from the aggregate distribution, it resamples residuals from (5) from within the estimation window71 to

simulate the bootstrapped time series. Figure 22 reports the resulting empirical distribution of p-values of

the respective SADF estimates. Like in the case of previous Monte Carlo studies, one can see that the static

return creates false detections, with the most substantial false detection at a 1% significance level of around

71I draw without replacement 770 residuals for a given stock and a given 10-day window. In the case of zero autocorrelation, this

would guarantee preserving the cumulative return as well as all static return properties within the window. In the case of stationarity

and no volatility clustering, that must also guarantee a similar cumulative return. The aggregate sample consists of 320 random

stock-10-day window pairs per day of observation, totaling 1,559,040 samples.
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2.2%. Still, this number does not closely match the detection rate of 6.4% for the actual data with the same

parameters.72

To sum up, we have observed that the distributional characteristics of returns, as well as the presence

of significant drift, can lead to false detections. Conversely, there is also the possibility of reverse causality

where the estimated substantial drift in the data may actually be caused by explosions, but is incorrectly

attributed to drift in the absence of the explosive term. However, it is important to note that none of the

specifications were able to closely match the frequency of explosion detection in the actual data. This

highlights the insufficiency of the conventional AR-based model in providing a comprehensive description

of the data, implying the presence of additional time-series dynamics at work.
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Figure 22: EPDF of p-values for bootstrapped time-series

11 Conclusion

In this paper, the novel phenomenon of explosiveness in individual stocks is examined, revealing that it is a

widespread and impactful occurrence that cannot be attributed to random variations under traditional asset

72The used parameters are k “ 2, r “ 0.2, and SL “ 1%. Reducing/increasing the lag-order k leads to a marginal decrease/increase

in the detection rate for both measures.
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pricing models. These explosive episodes are not simply outliers or fleeting "mini-bubbles"; instead, they

play a crucial role in the price discovery process. Explosive episodes are shown to exert a lasting influence

on asset prices, albeit with partial reversals. They can be categorized into two distinct types: explosions up

and explosions down, each with its unique characteristics. Explosiveness up tends to be more idiosyncratic,

while explosions down exhibit clustering and cyclical behavior across markets.

The paper begins by introducing the theoretical concept of explosiveness as a local unit root violation.

It underscores that detecting the theoretical explosion does not necessarily aim at identifying a martingale

violation but rather focuses on the ex-post detection of a stochastic form of price convexity. The paper further

explores the application of the SADF procedure for detecting explosive episodes in high-frequency data and

presents estimates based on 20 years of data encompassing the cross-section of the U.S. common stock

universe. The estimates reveal a detection frequency more than six times higher than anticipated, occurring

on at least 2.4% of dates for individual stocks. The prevalence of this phenomenon prompts questions about

the appropriate modeling approach and the underlying mechanisms driving it.

Aggregate portfolios, encompassing both market and standard double-sorted portfolios, exhibit a higher

susceptibility to explosive downward movements but seldom display upward explosiveness. The explosive-

ness within these aggregate portfolios is concentrated and correlated with the explosiveness of individual

stocks, yet it falls short of describing the majority of cases. This observation implies the utility of risk

adjustment before estimating the occurrence of explosions.

The average magnitude of individual stock explosions is 10%. I demonstrate that both directions of

explosiveness feature a partial reversal of 10% to 15% of the change before detection. This provides pre-

dictable and tradable returns, separating explosions from large overnight and high-frequency jumps. The

portfolios formed based on explosive stocks generate persistent alpha over the 20 years of observations that

standard factors cannot explain.

The study establishes links between these explosive episodes and liquidity measures, such as trading

volume and buying pressure, highlighting their intricate connection to the underlying market structure. Un-

like jumps, explosive episodes feature a pronounced buying pressure of around a 9% increase in abnormal

order imbalance. In contrast, the change in abnormal trading volume by 46% and 36% for up and down

explosion dates features smaller magnitudes than the jumps, pointing out the different nature of explosions.

A series of models is developed to elucidate the mechanisms that lead to explosiveness, and these models

illustrate that explosiveness naturally emerges as an equilibrium outcome. These models delve into the

interplay between informed traders, inelastic demand, and market dynamics, revealing that explosiveness

primarily hinges on factors such as the average knowledge possessed by insiders, the probability of their

85



presence in the market, and the distributional characteristics of inelastic demand.

Notably, explosiveness can manifest whenever the distribution of the demand size exhibits thin tails,

diminishing the likelihood of large demands but not precluding their occurrence entirely. The presence of

insiders is crucial for informative explosiveness, leading to a situation where the price experiences only

partial reversals.

To empirically test the models’ mechanisms based on expected inelastic demand and a lower presence of

informed traders, the study examines explosiveness around short-interest dissemination dates. Despite the

well-documented negative impact of high short interest on future returns, the analysis reveals that stocks with

the same feature tend to exhibit a higher probability of explosiveness up. This association is scrutinized fur-

ther through an event-type analysis, which assesses explosiveness before and after the dissemination date.

The findings suggest that stocks experiencing a negative surprise due to heavy shorting, as measured by

changes in the short interest ratio, tend to be more explosive immediately after the information becomes

available. This variable proves to be the only consistent predictor among a broad range of firm character-

istics, underscoring the pivotal role of short interest data in driving changes in explosiveness around the

dissemination date. In contrast, other static risk measures do not display the same economically meaningful

shifts, emphasizing the role of explosions as a subsequent price appreciation mechanism.
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Moments of HF Returns

N obs. r̄t,t`l Max Min s.d. Skew Kurt

Explosions Up

No adj.

Before 208,200 0.69 2.58 -2.38 0.31 0.29 38.51

Explosion 208,200 7.54 3.11 -2.11 0.31 1.49 47.51

After 208,200 0.21 2.62 -2.46 0.31 0.23 40.19

FF5

Before 199,284 0.00 2.29 -2.15 0.28 0.20 38.10

Explosion 199,284 5.46 2.86 -1.95 0.29 1.40 48.65

After 199,284 0.01 2.38 -2.24 0.29 0.18 40.52

Explosions Down

No adj.

Before 241,669 0.15 2.58 -2.46 0.31 0.18 37.76

Explosion 241,669 -6.65 2.46 -3.14 0.34 -0.94 43.84

After 241,669 0.25 3.00 -2.80 0.35 0.34 40.32

FF5

Before 232,066 -0.11 2.28 -2.19 0.28 0.12 37.82

Explosion 232,066 -4.68 2.20 -2.76 0.30 -0.87 43.86

After 232,066 0.05 2.66 -2.46 0.32 0.26 40.08

Table 3: The return properties 10 days before, after, and within explosive episode.

The second column reports the average 10-day return over the given period (10 days prior to the estimated explosive period, within

the 10 days when the explosion is detected, and 10 days after the period). The remaining columns summarize the properties of the

high-frequency returns within each of the three periods. The explosive intervals are selected using a non-overlapping procedure.

Additionally, the ten-day intervals before and after the explosive interval are chosen for the same stocks. For a stock to be con-

sidered, it must have reliable price data for a thirty-day interval, an initial price of at least $5, pass the bounce-back test around

detection, and satisfy liquidity condition. See appendix for details.
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Moments of HF Returns

Expl N obs. r̄t,t`l rExpl Max Min s.d. Skew Kurt

No 104,921 0.66 1.00 -0.97 0.12 0.30 31.95

Down 8,654 -3.61 -5.06 1.12 -1.31 0.14 -0.57 31.42

Up 2,897 3.33 3.44 0.94 -0.70 0.10 1.17 34.28

Table 4: Portfolio return characteristics in explosion window

The first two columns display the average percentage return over a 10-day period and the return at the point of explosion. The

remaining columns provide information on extreme short-term (5-minute) or overnight returns and the statistical moments (stan-

dard deviation, skewness, kurtosis) of their distribution. The initial row represents non-explosive episodes, determined at a 5%

significance level for k “ 1 and r “ 0.2.
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No-Adjustment Market CAPM FF3

Explosion

1% 6.20 5.68 5.74 5.61

2.5% 9.01 8.27 8.31 8.13

5% 12.27 11.30 11.32 11.09

10% 17.18 15.88 15.86 15.55

Explosion Up

1% 2.81 2.78 2.77 2.73

2.5% 4.10 4.07 4.03 3.98

5% 5.63 5.57 5.50 5.44

10% 7.98 7.84 7.70 7.64

Explosion Down

1% 3.39 2.90 2.97 2.88

2.5% 4.90 4.20 4.28 4.15

5% 6.65 5.73 5.82 5.65

10% 9.21 8.05 8.15 7.91

Table 5: Frequency of explosion detection

The table provides a summary of the frequency of detecting explosions, both upward and downward, at 1%, 2.5%, 5%, and 10%

significance levels. The analysis utilizes a lag order of k “ 1, a 10-day observation period, and a timestamp frequency of 5 minutes.

Stocks with an initial price below $5 are excluded from the analysis. Each column corresponds to the detection of explosiveness

with different price risk adjustments. The "Just Market" specification involves scaling down the price by the gross market return

since the beginning of the estimation period for explosion. "CAPM" and "FF3" correspond to adjustment by the gross return on the

Market and Market, HML, SMB portfolios, respectively, with weights based on pre-estimated risk exposures (betas) of the stocks.

These betas are estimated using high-frequency data over a 50-day period prior to the start of the estimation period for explosion.
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p-value ď 0.01 p-value ď 0.05

No Adj. JM CAPM FF3 No Adj. JM CAPM FF3

No Adj. 1.00 0.63 0.64 0.58 1.00 0.79 0.80 0.74

JM 0.69 1.00 0.83 0.72 0.85 1.00 0.94 0.87

CAPM 0.69 0.81 1.00 0.80 0.83 0.93 1.00 0.93

FF3 0.64 0.72 0.82 1.00 0.79 0.88 0.94 1.00

Table 6: Overlapping in detection of explosion

The table presents the frequency with which a 10-day episode marked as explosive at the 1% significance level, based on a specific

adjustment specification (defined per row of the table), is also identified as explosive at the 1% or 5% significance level according

to an alternative specification (defined per column of the table).

Average S.D. Skewness Kurtosis 10% 25% 50% 75% 90%

At explosion up 1.18 2.54 11.15 212.18 0.16 0.30 0.59 1.18 2.30

At explosion down -1.23 2.51 -10.61 194.94 -2.45 -1.26 -0.63 -0.33 -0.18

Table 7: Distribution of the HF-return at explosion detection
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No-Adjustment Market CAPM FF3

No Yes No Yes No Yes No Yes

Panel 1: Share of Stocks Explosive Up conditional on Mkt-explosive 10 days

1% 2.82 2.89 2.68 3.90 2.70 3.46 2.68 3.25

5% 5.64 5.50 5.38 7.52 5.35 6.89 5.32 6.53

Panel 2: Share of Stocks Explosive Up conditional on Mkt-Up-explosive 10 days

1% 2.82 7.50 2.68 3.58 2.70 3.21 2.68 2.97

5% 5.64 14.16 5.38 6.86 5.35 6.12 5.32 5.81

Panel 3: Share of Stocks Explosive Down conditional on Mkt-explosive 10 days

1% 2.84 8.84 2.76 3.89 2.86 3.80 2.77 3.65

5% 5.65 16.20 5.49 7.50 5.63 7.20 5.47 6.91

Panel 4: Share of Stocks Explosive Down conditional on Mkt-Down-explosive 10 days

1% 2.84 10.41 2.76 3.94 2.86 3.90 2.77 3.73

5% 5.65 19.07 5.49 7.61 5.63 7.33 5.47 6.97

Panel 5: Share of Stock Explosions Up on the Mkt-Explosive date

1% 5.32 7.52 6.34 5.66

5% 5.12 7.39 6.57 5.93

Panel 6: Share of Stock Explosions Down on the Mkt-Explosive date

1% 19.39 7.31 6.84 6.56

5% 18.75 7.27 6.50 6.23

Table 8: Association of Explosive Episodes in the Market and Individual Stocks

The table summarizes the frequency of detecting explosive episodes, both up and down, in relation to the explosiveness of the

market portfolio. The first four panels of the table provide information on the frequency of detecting an explosion in individual

stocks, either up (Panels 1-2) or down (Panels 3-4), within a 10-day interval conditionally on whether there was no detection or a

detection of explosiveness (either up or down) in the market portfolio. The sub-columns "No" and "Yes" indicate whether the market

was detected to be explosive at 5% significance level. The fifth and sixth panels of the table examine whether the detection date of

the detected stock explosion coincides with a market-explosive detection date. The reported numbers is the share of detection dates

at various significance levels labeled by explosions for the market.
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Dependent variable: rEx.Port - r f

Based on Explosion Up Based on Explosion Down

CAPM FF-C FF5 CAPM FF-C FF5

(1) (2) (3) (4) (5) (6)

Alpha ´0.010˚˚˚ ´0.010˚˚˚ ´0.010˚˚˚ 0.012˚˚˚ 0.013˚˚˚ 0.013˚˚˚

(0.0002) (0.0002) (0.0002) (0.0002) (0.0002) (0.0002)

‘Mkt-RF‘ 0.646˚˚˚ 0.590˚˚˚ 0.598˚˚˚ 0.855˚˚˚ 0.784˚˚˚ 0.771˚˚˚

(0.018) (0.019) (0.019) (0.020) (0.021) (0.022)

SMB 0.268˚˚˚ 0.262˚˚˚ 0.384˚˚˚ 0.384˚˚˚

(0.032) (0.033) (0.040) (0.042)

HML 0.094˚˚˚ 0.053 0.019 0.077˚

(0.028) (0.033) (0.035) (0.042)

RMW 0.005 ´0.018

(0.046) (0.060)

CMA ´0.129˚˚ 0.186˚˚

(0.058) (0.074)

Mom ´0.021 ´0.031 ´0.078˚˚˚ ´0.062˚˚

(0.019) (0.020) (0.025) (0.026)

Observations 4,001 4,001 4,001 3,850 3,850 3,850

R2 0.252 0.268 0.269 0.329 0.346 0.347

Adjusted R2 0.252 0.267 0.267 0.329 0.345 0.346

Residual Std. Error 0.011 (df = 3999) 0.010 (df = 3996) 0.010 (df = 3994) 0.014 (df = 3848) 0.014 (df = 3845) 0.014 (df = 3843)

Note: ˚pă0.1; ˚˚pă0.05; ˚˚˚pă0.01

Table 9: Alpha of explosive portfolio

The equally weighted portfolios are constructed daily, guided by the explosion detection criteria. Each portfolio consists of a

minimum of 10 stocks.
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Dependent variable: rEx.Port - r f

Based on Explosion Up Based on Explosion Down

CAPM FF-C FF5 CAPM FF-C FF5

(1) (2) (3) (4) (5) (6)

Alpha 0.006˚˚˚ 0.007˚˚˚ 0.007˚˚˚ 0.009˚˚˚ 0.009˚˚˚ 0.009˚˚˚

(0.0002) (0.0002) (0.0002) (0.0002) (0.0002) (0.0002)

‘Mkt-RF‘ ´0.645˚˚˚ ´0.590˚˚˚ ´0.596˚˚˚ 0.837˚˚˚ 0.768˚˚˚ 0.752˚˚˚

(0.017) (0.019) (0.019) (0.019) (0.021) (0.021)

SMB ´0.266˚˚˚ ´0.259˚˚˚ 0.364˚˚˚ 0.359˚˚˚

(0.031) (0.033) (0.040) (0.042)

HML ´0.094˚˚˚ ´0.058˚ 0.028 0.094˚˚

(0.027) (0.033) (0.035) (0.041)

RMW 0.008 ´0.049

(0.045) (0.059)

CMA 0.115˚˚ 0.210˚˚˚

(0.057) (0.072)

Mom 0.018 0.028 ´0.085˚˚˚ ´0.066˚˚˚

(0.019) (0.019) (0.024) (0.025)

Observations 4,001 4,001 4,001 3,850 3,850 3,850

R2 0.256 0.271 0.272 0.326 0.343 0.344

Adjusted R2 0.255 0.270 0.271 0.326 0.342 0.343

Residual Std. Error 0.010 (df = 3999) 0.010 (df = 3996) 0.010 (df = 3994) 0.014 (df = 3848) 0.013 (df = 3845) 0.013 (df = 3843)

Note: ˚pă0.1; ˚˚pă0.05; ˚˚˚pă0.01

Table 10: Alpha of explosive portfolio using Bid and Offer

The equally weighted portfolios are constructed daily, guided by the explosion detection criteria. Each portfolio consists of a

minimum of 10 stocks. The actual bid and offer prices are employed for calculating the returns. The actual bid and offer prices are

employed for calculating the returns. A buy-sell (sell-buy) strategy is applied following upward (downward) explosions, meaning

that to compute returns, the offer (bid) price is used as the numerator and the bid (offer) price is used as the denominator.
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Jump Up Jump Down N obs. Abn. B.Pr. (%) Abn. TV. (%) ES (b.p.) Abn. ES (b.p) Abn. ES (Norm) (%)

No Explosions

No No 13,385,037 0.0 -0.9 20.9 -1.2 -3.9

No Yes 97,607 1.1 68.8 38.8 5.9 31.3

Yes No 114,159 2.4 65.6 39.6 3.8 21.4

Yes Yes 5,548 2.3 88.6 75.4 13.6 51.6

Explosions Up

No No 183,719 9.3 44.7 20.6 -0.5 1.7

No Yes 268 13.7 150.6 71.3 7.7 34.0

Yes No 17,034 9.6 192.4 31.2 3.7 28.9

Yes Yes 434 14.6 253.4 64.4 6.9 37.6

Explosions Down

No No 216,848 -6.7 35.6 21.5 1.9 12.8

No Yes 20,518 -0.9 174.4 33.7 9.3 52.1

Yes No 795 -7.5 91.4 63.2 18.6 68.3

Yes Yes 1,049 -4.2 175.7 60.9 22.1 92.2

Table 11: Average Liquidity Measures around Explosions and Jumps

The table presents average daily abnormal buying pressure, abnormal trading volume, and effective spread measures on the day

of detection and the preceding day for explosions, jumps, or both. Data for daily measures are sourced from Intraday Indicators

by WRDS. Daily buying pressure is defined as the order imbalance, representing the difference between the dollar trading volume

assigned to buyer-initiated and seller-initiated trades, classified using Lee and Ready’s (1991) algorithm. The abnormal charac-

teristics in the fourth, fifth, and eighth columns represent the normalized difference between the respective daily measure and the

rolling average of the characteristic from the previous 30 days. Abnormal trading volume and buying pressure in the fourth and

fifth columns are normalized by the average daily trading volume over the previous 30 days. The abnormal effective spread in the

last column is normalized by the average effective spread over 30 days. The reported characteristics represent the average of these

abnormal liquidity measures over two days: event detection and the preceding date. The sixth and seventh columns report (not

normalized) the average dollar effective spread and abnormal effective spread in basis points. .
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Dep.Var Abn. B.Pr Abn. TV Abn. ES

(1) (2) (3) (4) (5) (6)

Expl. Up 8.5˚˚˚ 8.2˚˚˚ 45.2˚˚˚ 44.1˚˚˚ 0.99˚˚˚ 1.0˚˚˚

(0.12) (0.13) (0.60) (0.65) (0.03) (0.04)

Expl. Down -5.6˚˚˚ -5.5˚˚˚ 32.3˚˚˚ 32.2˚˚˚ 2.3˚˚˚ 2.2˚˚˚

(0.10) (0.10) (0.56) (0.60) (0.06) (0.06)

Jump Up 2.1˚˚˚ 1.8˚˚˚ 62.3˚˚˚ 65.8˚˚˚ 4.6˚˚˚ 4.8˚˚˚

(0.09) (0.11) (1.5) (1.7) (0.11) (0.13)

Jump Down 1.2˚˚˚ 1.7˚˚˚ 66.3˚˚˚ 70.0˚˚˚ 5.8˚˚˚ 6.0˚˚˚

(0.12) (0.14) (1.7) (1.9) (0.17) (0.19)

Expl. Up ˆ Jump Up -1.5˚˚˚ -2.0˚˚˚ 84.0˚˚˚ 84.0˚˚˚ -0.71˚˚˚ -0.57˚˚˚

(0.26) (0.29) (2.6) (3.0) (0.15) (0.18)

Expl. Down ˆ Jump Up -3.9˚˚˚ -3.5˚˚˚ -43.0˚˚˚ -48.6˚˚˚ 7.5˚˚˚ 7.5˚˚˚

(0.72) (0.89) (7.3) (7.6) (1.0) (1.2)

Expl. Up ˆ Jump Down 2.8˚ 2.9 8.6 -3.9 -1.7˚˚ 0.24

(1.7) (2.5) (9.4) (12.3) (0.80) (1.0)

Expl. Down ˆ Jump Down 4.2˚˚˚ 4.7˚˚˚ 73.2˚˚˚ 75.5˚˚˚ 0.50˚˚ 0.44

(0.25) (0.29) (5.5) (5.8) (0.25) (0.28)

Observations 14,043,016 10,907,987 14,043,016 10,907,987 14,043,016 10,907,987

R2 0.02984 0.03409 0.14605 0.15684 0.07837 0.08842

Firm fixed effects      

Date fixed effects      

Table 12: Liquidity Measures around Explosions and Jumps

The table presents the association between explosive events and the dependent variables: abnormal trading volume, abnormal

buying pressure, and abnormal effective spread averaged over two days around the detection. Refer to Table 11 for detailed

definitions. The 1st, 3rd, and 5th columns report two-way fixed-effect regression with firm and date controls. The 2nd, 4th, and

6th columns report two-way fixed-effect regression with firm and date controls augmented by standard firm-characteristic controls.

Standard errors, reported in parentheses, are two-way clustered by firm and date. The control variables include idiosyncratic

variance, market equity (ME), book-to-market ratio (BtM), factor exposures with respect to the FF3 model over a 120-day interval

(βMkt , βSMB, and βHML), short-term reversal, momentum, turnover, change of assets, and operating profitability, Amihud Liquidity,

and Institutional Ownership. Turnover is the average daily trading volume over a 20-day period, lagged by 20 days. Momentum is

the return over the period from t “ 250 to t “ 20 days before the date. Short-term reversal is the preceding monthly return laggged

by ME, BtM, Change of Assets, and Operating profitability are defined consistently with Fama-French. Idiosyncratic volatility (IV )

is realized idiosyncratic volatility in the prior days using an exponentially weighted moving average (EWMA) model consistent

with RiskMetrics. The sample period spans from 2003 to 2022, and statistical significance is indicated at the 10%, 5%, and 1%

levels by ˚, ˚˚, ˚˚˚, respectively.
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Year Group Explosion Small Medium Large Small Medium Large

2003-2008 No 328,145 1,520,104 1,746,256 95.9 96.9 97.3

Up 7,190 24,481 24,596 2.1 1.6 1.4

Dn 6,765 23,765 23,977 2.0 1.5 1.3

2009-2013 No 196,027 1,257,021 1,480,401 96.2 97.2 97.5

Up 4,159 19,307 19,373 2.0 1.5 1.3

Dn 3,516 17,341 18,728 1.7 1.3 1.2

2014-2018 No 298,795 1,272,315 1,406,493 96.8 97.5 97.4

Up 5,248 16,336 17,294 1.7 1.3 1.2

Dn 4,542 16,059 20,012 1.5 1.2 1.4

2018-2022 No 225,631 1,002,090 1,239,464 97.4 97.7 97.5

Up 3,628 11,360 14,296 1.6 1.1 1.1

Dn 2,460 12,045 17,237 1.1 1.2 1.4

All No 1,048,598 5,051,530 5,872,614 96.5 97.3 97.4

Up 20,225 71,484 75,559 1.9 1.4 1.3

Dn 17,283 69,210 79,954 1.6 1.3 1.3

Table 13: Number of observations for return decomposition analysis in Subsection 5.3.

The table reports summary on the number of stocks in the explosion groups. The stocks are pre-classified into three equal groups

based on day-specific size, measured 30 days prior. As small stocks are more susceptible to exclusion during cleaning procedures,

the primary sample is predominantly composed of medium and large stocks
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Logit Ridge ENet Lasso

Variable Estimate (Q5, Q95) Estimate (Q5, Q95) Estimate (Q5, Q95) Estimate (Q5, Q95)

Intercept -2.71 (-2.71, -2.70) -2.71 (-2.71, -2.70) -2.71 (-2.71, -2.70) -2.71 (-2.71, -2.70)

a2me 0.01 (0.00, 0.02) -0.02 (-0.03, -0.01) 0.00 (0.00, 0.00) 0.00 (0.00, 0.00)

assets -0.04 (-0.11, 0.03) -0.09 (-0.10, -0.07) -0.05 (-0.10, 0.01) -0.05 (-0.10, 0.01)

ato -0.03 (-0.07, 0.00) -0.01 (-0.03, 0.01) -0.01 (-0.02, 0.01) -0.01 (-0.02, 0.01)

betahml 0.02 (-0.01, 0.04) 0.02 (0.01, 0.04) 0.00 (-0.02, 0.00) 0.00 (-0.02, 0.00)

betamkt -0.12 (-0.14, -0.10) -0.10 (-0.11, -0.08) -0.11 (-0.13, -0.09) -0.11 (-0.13, -0.09)

betasmb -0.04 (-0.06, -0.02) -0.02 (-0.04, 0.00) -0.01 (-0.02, 0.02) -0.01 (-0.02, 0.02)

bidask 0.03 (-0.01, 0.07) 0.05 (0.03, 0.07) 0.00 (-0.04, 0.00) 0.00 (-0.04, 0.00)

bm -0.09 (-0.15, -0.03) -0.06 (-0.08, -0.04) -0.09 (-0.11, -0.05) -0.09 (-0.11, -0.05)

c -0.04 (-0.08, -0.01) -0.02 (-0.04, -0.01) 0.00 (0.00, 0.02) 0.00 (0.00, 0.02)

cto -0.01 (-0.09, 0.06) 0.00 (-0.02, 0.02) 0.00 (0.00, 0.00) 0.00 (0.00, 0.00)

e2p -0.11 (-0.15, -0.07) -0.07 (-0.09, -0.05) -0.09 (-0.13, -0.07) -0.09 (-0.13, -0.07)

freecf -0.02 (-0.06, 0.01) -0.01 (-0.03, 0.01) 0.00 (0.00, 0.02) 0.00 (0.00, 0.02)

idiovol 0.10 (0.07, 0.13) 0.08 (0.06, 0.10) 0.08 (0.06, 0.11) 0.08 (0.06, 0.11)

intmom 0.14 (0.12, 0.17) 0.07 (0.06, 0.09) 0.06 (0.03, 0.09) 0.06 (0.03, 0.09)

invest 0.07 (0.04, 0.10) 0.05 (0.03, 0.07) 0.05 (0.03, 0.07) 0.05 (0.03, 0.07)

lev 0.05 (0.02, 0.09) 0.04 (0.02, 0.06) 0.02 (0.00, 0.04) 0.02 (0.00, 0.04)

ltrev 0.03 (0.01, 0.05) 0.02 (0.00, 0.03) 0.02 (0.00, 0.04) 0.02 (0.00, 0.04)

mktcap -0.29 (-0.36, -0.22) -0.14 (-0.16, -0.13) -0.24 (-0.30, -0.19) -0.25 (-0.32, -0.20)

mom -0.18 (-0.22, -0.14) -0.09 (-0.11, -0.07) -0.07 (-0.10, -0.04) -0.07 (-0.10, -0.04)

noa -0.04 (-0.08, -0.01) -0.01 (-0.03, 0.01) 0.00 (0.00, 0.00) 0.00 (0.00, 0.00)

oa 0.06 (0.04, 0.08) 0.04 (0.02, 0.05) 0.04 (0.02, 0.06) 0.04 (0.02, 0.06)

ol -0.00 (-0.06, 0.08) -0.00 (-0.01, 0.02) 0.00 (0.00, 0.00) 0.00 (0.00, 0.00)

pcm 0.01 (-0.04, 0.05) -0.02 (-0.04, 0.00) -0.00 (-0.00, 0.03) -0.00 (-0.00, 0.02)

pm -0.04 (-0.08, 0.00) -0.04 (-0.07, -0.03) -0.02 (-0.04, 0.01) -0.02 (-0.04, 0.01)

prof -0.05 (-0.10, 0.00) -0.00 (-0.01, 0.02) 0.00 (0.00, 0.02) -0.00 (-0.00, 0.02)

q 0.10 (0.02, 0.18) 0.02 (0.01, 0.04) 0.00 (-0.01, 0.00) 0.00 (-0.01, 0.00)

rna 0.05 (0.01, 0.09) 0.06 (0.04, 0.08) 0.03 (-0.01, 0.06) 0.03 (-0.01, 0.06)

roa -0.09 (-0.16, -0.01) -0.03 (-0.04, -0.01) -0.00 (-0.00, 0.04) 0.00 (0.00, 0.04)

roe 0.11 (0.04, 0.17) 0.02 (0.00, 0.03) 0.00 (0.00, 0.00) 0.00 (0.00, 0.00)

s2p 0.07 (-0.01, 0.14) 0.00 (-0.02, 0.01) 0.00 (0.00, 0.00) 0.00 (0.00, 0.00)

strev -0.08 (-0.10, -0.05) -0.05 (-0.07, -0.04) -0.03 (-0.05, -0.01) -0.03 (-0.05, -0.01)

suv -0.15 (-0.18, -0.13) -0.11 (-0.13, -0.10) -0.11 (-0.13, -0.08) -0.11 (-0.13, -0.09)

turn 0.17 (0.14, 0.19) 0.11 (0.09, 0.12) 0.12 (0.09, 0.14) 0.12 (0.09, 0.14)

w52h 0.11 (0.08, 0.15) 0.01 (-0.01, 0.03) 0.00 (-0.02, 0.00) 0.00 (-0.02, 0.00)

Table 14: Logistic Regression of Explosiveness Up against Firm Characteristics

This table presents estimates from logistic and penalized logistic regressions using the indicator of explosion up detection over

a week as the dependent variable. The explanatory variables include a set of firm characteristics described in Freyberger et al.

(2020). The results are reported for elastic net penalization with hyperparameter α “ 0 (Ridge regression), α “ 0.5, and α “ 1

(Lasso regression). The penalty hyperparameter λ , which controls the strength of the penalty, is determined by minimizing the error

through 10-fold cross-validation (see Hastie et al. (2009) for details). Bootstrapped 90% confidence intervals are also provided for

the results. The sample covers 1,575,707 week-firm observations since September 2003 to December 2022.
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Logit Ridge ENet Lasso

Variable Estimate (Q5, Q95) Estimate (Q5, Q95) Estimate (Q5, Q95)

Intercept -2.54 (-2.54, -2.53) -2.54 (-2.54, -2.53) -2.54 (-2.54, -2.53) -2.54 (-2.54, -2.53)

a2me 0.03 (0.02, 0.03) 0.02 (0.00, 0.03) 0.00 (0.00, 0.00) 0.00 (0.00, 0.00)

assets -0.17 (-0.24, -0.10) -0.09 (-0.12, -0.04) 0.00 (0.00, 0.02) 0.00 (0.00, 0.01)

ato -0.05 (-0.09, -0.02) -0.03 (-0.06, 0.00) -0.01 (-0.02, 0.02) -0.01 (-0.02, 0.02)

betahml 0.07 (0.05, 0.09) 0.06 (0.04, 0.07) 0.05 (0.03, 0.07) 0.05 (0.03, 0.07)

betamkt 0.01 (-0.01, 0.03) 0.02 (0.00, 0.04) 0.01 (-0.01, 0.02) 0.01 (-0.01, 0.02)

betasmb 0.04 (0.02, 0.07) 0.04 (0.02, 0.06) 0.03 (0.01, 0.05) 0.03 (0.01, 0.05)

bidask -0.20 (-0.23, -0.16) -0.18 (-0.21, -0.15) -0.18 (-0.21, -0.15) -0.18 (-0.21, -0.15)

bm -0.14 (-0.20, -0.09) -0.10 (-0.13, -0.06) -0.08 (-0.11, -0.05) -0.08 (-0.11, -0.06)

c -0.02 (-0.06, 0.01) -0.01 (-0.03, 0.02) 0.00 (0.00, 0.03) 0.00 (0.00, 0.03)

cto 0.22 (0.15, 0.29) 0.10 (0.05, 0.13) 0.00 (-0.02, 0.00) 0.00 (-0.01, 0.00)

e2p -0.04 (-0.07, -0.01) -0.05 (-0.08, -0.03) -0.04 (-0.08, -0.02) -0.04 (-0.07, -0.01)

freecf -0.07 (-0.10, -0.04) -0.06 (-0.09, -0.04) -0.04 (-0.07, -0.01) -0.04 (-0.07, -0.01)

idiovol -0.05 (-0.08, -0.03) -0.02 (-0.04, 0.01) -0.01 (-0.02, 0.01) -0.01 (-0.02, 0.01)

intmom -0.21 (-0.24, -0.19) -0.14 (-0.16, -0.12) -0.15 (-0.17, -0.12) -0.15 (-0.17, -0.12)

invest 0.03 (0.00, 0.06) 0.06 (0.04, 0.09) 0.07 (0.05, 0.09) 0.07 (0.05, 0.09)

lev 0.05 (0.01, 0.08) 0.06 (0.04, 0.09) 0.05 (0.02, 0.07) 0.05 (0.03, 0.08)

ltrev 0.10 (0.08, 0.12) 0.10 (0.08, 0.12) 0.10 (0.08, 0.12) 0.10 (0.08, 0.12)

mktcap 0.12 (0.04, 0.19) 0.07 (0.02, 0.10) 0.00 (-0.03, 0.00) 0.00 (-0.03, 0.00)

mom 0.70 (0.67, 0.74) 0.58 (0.55, 0.60) 0.62 (0.58, 0.64) 0.63 (0.60, 0.66)

noa 0.03 (-0.01, 0.07) 0.04 (0.02, 0.07) 0.05 (0.03, 0.08) 0.05 (0.03, 0.08)

oa 0.02 (0.00, 0.04) 0.02 (0.00, 0.04) 0.01 (0.00, 0.02) 0.01 (0.00, 0.02)

ol -0.20 (-0.27, -0.13) -0.09 (-0.11, -0.04) -0.02 (-0.04, 0.01) -0.01 (-0.02, 0.03)

pcm 0.05 (0.02, 0.09) 0.02 (-0.01, 0.05) 0.00 (0.00, 0.01) 0.00 (0.00, 0.01)

pm -0.03 (-0.07, 0.00) -0.02 (-0.04, 0.01) 0.00 (0.00, 0.03) 0.00 (0.00, 0.03)

prof -0.10 (-0.14, -0.06) -0.06 (-0.08, -0.02) -0.04 (-0.07, -0.02) -0.04 (-0.07, -0.02)

q -0.04 (-0.12, 0.03) -0.03 (-0.07, -0.01) 0.00 (0.00, 0.00) 0.00 (0.00, 0.00)

rna -0.04 (-0.08, 0.00) -0.01 (-0.03, 0.03) 0.00 (0.00, 0.01) 0.00 (0.00, 0.00)

roa -0.13 (-0.20, -0.06) -0.08 (-0.12, -0.04) -0.03 (-0.06, 0.01) -0.03 (-0.06, 0.01)

roe 0.11 (0.04, 0.17) 0.06 (0.01, 0.09) 0.00 (0.00, 0.00) 0.00 (0.00, 0.00)

s2p 0.02 (-0.06, 0.09) -0.00 (-0.04, 0.05) 0.00 (0.00, 0.00) 0.00 (0.00, 0.01)

strev 0.13 (0.10, 0.15) 0.09 (0.07, 0.11) 0.10 (0.08, 0.12) 0.10 (0.08, 0.12)

suv -0.09 (-0.11, -0.07) -0.09 (-0.10, -0.07) -0.09 (-0.11, -0.07) -0.09 (-0.11, -0.07)

turn 0.14 (0.12, 0.17) 0.15 (0.13, 0.17) 0.14 (0.11, 0.16) 0.14 (0.12, 0.16)

w52h -0.53 (-0.56, -0.50) -0.43 (-0.46, -0.41) -0.45 (-0.47, -0.42) -0.45 (-0.48, -0.41)

Table 15: Logistic Regression of Explosiveness Down against Firm Characteristics

This table presents estimates from logistic and penalized logistic regressions using the indicator of explosion down detection over

a week as the dependent variable. The explanatory variables include a set of firm characteristics described in Freyberger et al.

(2020). The results are reported for elastic net penalization with hyperparameter α “ 0 (Ridge regression), α “ 0.5, and α “ 1

(Lasso regression). The penalty hyperparameter λ , which controls the strength of the penalty, is determined by minimizing the error

through 10-fold cross-validation (see Hastie et al. (2009) for details). Bootstrapped 90% confidence intervals are also provided for

the results. The sample covers 1,575,707 week-firm observations since September 2003 to December 2022.
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Variables Mean S.D. Q-10% Q-25% Q-50% Q-75% Q-90%

SIR 5.16 5.77 0.48 1.45 3.17 6.83 12.29

∆SIR 0.01 0.85 -0.60 -0.20 0.00 0.20 0.64

SIRpo 0.14 4.78 -4.12 -2.48 -0.78 1.37 5.22

∆SIRpo 0.00 1.33 -1.45 -0.65 0.02 0.69 1.45

DtC 6.66 6.67 1.30 2.50 4.74 8.59 14.02

∆DtC 0.01 1.04 -0.81 -0.33 0.00 0.32 0.84

logrt,t`9 (%) -0.09 8.98 -9.14 -3.77 0.22 4.07 8.74

rAd j.CAPM
t,t`9 (%) -0.11 8.37 -8.08 -3.66 -0.22 3.16 7.72

rAd j.FF3
t,t`9 (%) 0.02 8.22 -7.69 -3.44 -0.13 3.17 7.65

IV (%) 2.16 1.51 0.90 1.23 1.79 2.63 3.75

Am.Liq 0.64 6.33 0.00 0.00 0.00 0.02 0.17

Log-Size 12.95 1.83 10.68 11.64 12.84 14.12 15.42

ME 7.37 36.09 0.11 0.30 1.01 3.59 13.18

Op. Prof 0.21 1.06 -0.05 0.11 0.20 0.30 0.46

∆ Assets 0.16 0.57 -0.09 -0.01 0.06 0.17 0.40

BtM 0.58 0.61 0.12 0.26 0.49 0.79 1.14

βMkt 0.94 0.51 0.31 0.65 0.94 1.23 1.53

βSMB 0.70 0.79 -0.20 0.16 0.63 1.15 1.68

βHML 0.08 0.89 -0.90 -0.36 0.09 0.54 1.05

ST-Reversal 0.00 0.13 -0.13 -0.05 0.01 0.06 0.13

Momentum 0.08 0.42 -0.40 -0.13 0.09 0.29 0.52

Table 16: Summary Statistics for SI analysis

Summary statistics for the variables used in the analysis around the dissemination of short interest (SI). The first two columns

show the average and standard deviation of the variables in the sample, while the other columns display the respective 10%, 25%,

50%, 75%, and 90% quantiles. The sample includes U.S. companies with share codes 10 and 11, primary exchange listings on

NYSE, Amex, or NASDAQ, matched data in TAQ from September 2003 to December 2022, and estimated explosiveness following

the dissemination date. SIR: Short Interest Ratio, disclosed by FINRA and normalized by shares outstanding from CRSP. ∆SIR:

Change in reported SIR since the last reported SI for the firm (typically a month before February 2007, and half a month after).

SIRpo: The residual of a cross-sectional regression of SIR against the indicator of being in a quintile-group on a given day based

on idiosyncratic variance, market equity (ME), book-to-market ratio (BtM), factor exposures with respect to FF3 model over a

120-day interval (βMkt , βSMB, and βHML), short-term reversal, momentum, and industry identified by the first two digits of the

SIC code. Turnover is average daily trading volume over a 20-day period, lagged by 20 days. Days-to-Cover pDTCq is SIR

normalized by turnover. Amihud Liquidity measure is defined according to standard practice. ST-Reversal is the 20-day return prior

to the dissemination date. Momentum is return over the period from t “ 250 to t “ 20 days before the date. ME, BtM, Change of

Assets, and Operating profitability are defined consistently with Fama-French. Idiosyncratic volatility (IV ) is realized idiosyncratic

volatility in the prior days using an exponentially weighted moving average (EWMA) model consistent with RiskMetrics. logrt,t`9

is log-return over a 10-day interval (excluding the first overnight return, as used in explosiveness estimation). rAd j.CAPM
t,t`9 and

rAd j.FF3
t,t`9 are adjusted 10-day CRSP returns expressed in percentage terms, based on pre-estimated factor exposures lagged by 31

days over a 120-day interval using the CAPM and Fama-French 3 models. All variables are winsorized at 0.1% from both sides.
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OLS FE-LS

Dep.Var Ret (%) Ret CAPM-Adj. (%) Ret FF3-Adj. (%) Ret (%) Ret CAPM-Adj. (%) Ret FF3-Adj. (%)

(1) (2) (3) (4) (5) (6)

Constant -0.16˚˚˚ -0.05˚˚˚ 0.07˚˚˚

(0.009) (0.010) (0.009)

High SIRpo -0.66˚˚˚ -0.35˚˚˚ -0.28˚˚˚ -0.38˚˚˚ -0.29˚˚˚ -0.29˚˚˚

(0.03) (0.03) (0.03) (0.07) (0.05) (0.05)

Turnover -4.0˚˚ -0.39 0.47

(1.5) (2.3) (2.0)

IV -5.5 -3.6 -2.7

(3.6) (4.1) (4.0)

Am.Liq -0.0009 0.003˚˚ 0.003˚˚

(0.001) (0.0008) (0.0010)

Log-Size -0.65˚˚˚ -0.89˚˚˚ -0.88˚˚˚

(0.08) (0.09) (0.08)

BtM 0.09˚ 0.18˚˚˚ 0.18˚˚˚

(0.04) (0.04) (0.04)

∆ Assets -0.03 -0.04 -0.03

(0.03) (0.03) (0.02)

Op. Prof 0.008 -0.01 -0.009

(0.009) (0.01) (0.01)

IOR -0.15 -0.16 -0.17

(0.10) (0.12) (0.12)

ST-Reversal -2.5˚˚˚ -3.3˚˚˚ -3.5˚˚˚

(0.45) (0.51) (0.50)

Momentum -0.10 -0.39˚˚ -0.40˚˚

(0.14) (0.15) (0.13)

Q5 ´ Am.Liq 0.58˚˚ 0.64˚˚ 0.66˚˚

(0.17) (0.19) (0.17)

Standard-Errors IID 3-way clustered: Date & Size-BtM Portfolio & Firm

Observations 1,412,719 1,412,717 1,412,714 1,295,065 1,295,064 1,295,061

R2 0.00036 9.75 ˆ 10´5 6.12 ˆ 10´5 0.23944 0.09764 0.07039

Date-Industry fixed effects   

Firm fixed effects   

Quintile fixed effects   

Table 17: Return following SI dissemination

The table presents the regression analysis of predictive power of Short Interest Ratio in 10-day subsequent returns following the

dissemination of short interest (SI). The dependent variables are the log-return over a 10-day interval (excluding the first overnight

return, as used in explosiveness estimation), and adjusted 10-day CRSP returns, expressed in percentage terms. The adjustments are

based on pre-estimated factor exposures lagged by 31 days over a 120-day interval, according to CAPM and Fama-French 3 models.

The primary regressor in the first three columns is the treatment of being in the top decile of partialled out short interest, without

the inclusion of controls. In the next three columns, fixed-effect regressions with a variety of control variables are presented. The

definitions of the control variables are consistent with those in the summary statistics table. The control variables also encompass

indicators for being in a quintile-group on a given day based on IV , ME, BtM, βMkt , βSMB, and βHML. For clarity and simplicity,

only the coefficient on the most liquid stocks, Q5 ´ Am.Liq, is included in the table, as it is the only consistently significant

coefficient. The regression coefficients are reported with standard errors in columns 1-3 and are 3-way clustered by Date, Firm,

and Size-BtM Portfolios in columns 4-6. The sample period spans from 2003 to 2022, and statistical significance is indicated at the

10%, 5%, and 1% levels by ˚, ˚˚, ˚˚˚, respectively.
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Panel A: Fixed-Effect Least Square Estimates

Use SIR as High SI Use SIRpo as High SI

Dep.Var Expl.Up (%) Expl.Up CAPM-Adj. (%) Expl.Up FF3-Adj. (%) Expl.Up (%) Expl.Up CAPM-Adj. (%) Expl.Up FF3-Adj. (%)

(1) (2) (3) (4) (5) (6)

High SI 0.53˚˚˚ 0.49˚˚˚ 0.31˚˚ 0.60˚˚˚ 0.64˚˚˚ 0.45˚˚˚

(0.13) (0.13) (0.13) (0.13) (0.12) (0.12)

Observations 1,060,913 1,039,901 1,039,901 1,060,913 1,039,901 1,039,901

R2 0.07486 0.06192 0.05646 0.07487 0.06194 0.05647

Date-Industry fixed effects      

Firm fixed effects      

Panel B:Fixed-Effect Logit Estimates

Use Q-10 by SIR as High SI Use Q-10 by SIRpo as High SI

Dep.Var Expl.Up Expl.Up CAPM-Adj. Expl.Up FF3-Adj. Expl.Up Expl.Up CAPM-Adj. Expl.Up FF3-Adj. (%)

(1) (2) (3) (4) (5) (6)

High SI 0.09˚˚˚ 0.09˚˚˚ 0.06˚˚ 0.11˚˚˚ 0.11˚˚˚ 0.08˚˚˚

(0.02) (0.02) (0.02) (0.02) (0.02) (0.02)

Observations 881,370 883,236 889,078 881,370 883,236 889,078

R2 0.06670 0.05482 0.04961 0.06673 0.05487 0.04963

Date-Industry fixed effects      

Firm fixed effects      

Table 18: Explosiveness Up following SI dissemination.

The table presents the predictive power of the short interest ratio in 10-day subsequent returns following the dissemination of short

interest (SI). The dependent variables are indicators of detecting an upward explosion over at least one of the five subsequent (over-

lapping) 10-day intervals following the dissemination of short interest. Columns (1-3) and (4-6) report the results for detection

using raw price data (adjusted only for dividends and stock splits), CAPM-adjusted price data, and FF3-adjusted price data, respec-

tively. The first three columns present results where the Short Interest Ratio (SIR) is used to select the top decile of heavily shorted

stocks as the treatment group. The other three columns present results where the partialled-out SIR is used. The control variables

and fixed effects are consistent with the controls used for return regressions reported in Table 17. Significant coefficients for all

controls are reported in Table 19. The sample period spans from 2003 to 2022, and statistical significance is indicated at the 10%,

5%, and 1% levels by ˚, ˚˚, ˚˚˚, respectively.
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Use SIR as High SI Use SIRpo as High SI

Dep.Var Expl.Up (%) Expl.Up CAPM-Adj. (%) Expl.Up FF3-Adj. (%) Expl.Up (%) Expl.Up CAPM-Adj. (%) Expl.Up FF3-Adj. (%)

(1) (2) (3) (4) (5) (6)

High SI 0.53˚˚˚ 0.49˚˚˚ 0.31˚˚ 0.60˚˚˚ 0.64˚˚˚ 0.45˚˚˚

(0.13) (0.13) (0.13) (0.13) (0.12) (0.12)

Turnover 4.8 4.5 5.5˚ 4.6 4.1 5.1

(3.2) (3.5) (3.1) (3.2) (3.5) (3.1)

IV 20.2˚˚˚ 15.3˚˚˚ 15.6˚˚˚ 20.1˚˚˚ 15.3˚˚˚ 15.7˚˚˚

(4.8) (5.2) (5.1) (4.8) (5.3) (5.1)

Am.Liq -0.005 0.002 0.004 -0.005 0.002 0.004

(0.006) (0.006) (0.006) (0.006) (0.006) (0.006)

Log-Size -1.1˚˚˚ -1.1˚˚˚ -1.2˚˚˚ -1.1˚˚˚ -1.1˚˚˚ -1.2˚˚˚

(0.11) (0.12) (0.11) (0.11) (0.12) (0.11)

BtM 0.10 0.11 0.14 0.10 0.11 0.13

(0.10) (0.11) (0.11) (0.10) (0.11) (0.11)

∆ Assets 0.02 0.05 0.03 0.02 0.05 0.03

(0.06) (0.06) (0.06) (0.06) (0.06) (0.06)

Op. Prof -0.05 -0.04 -0.01 -0.05 -0.04 -0.01

(0.03) (0.03) (0.03) (0.03) (0.03) (0.03)

IOR -1.1˚˚˚ -1.3˚˚˚ -1.4˚˚˚ -1.1˚˚˚ -1.3˚˚˚ -1.5˚˚˚

(0.24) (0.25) (0.23) (0.24) (0.24) (0.23)

ST-Reversal -3.2˚˚˚ -3.3˚˚˚ -2.9˚˚˚ -3.2˚˚˚ -3.3˚˚˚ -2.9˚˚˚

(0.39) (0.40) (0.36) (0.39) (0.40) (0.36)

Momentum -0.60˚˚˚ -0.61˚˚˚ -0.55˚˚˚ -0.61˚˚˚ -0.63˚˚˚ -0.56˚˚˚

(0.14) (0.14) (0.13) (0.14) (0.14) (0.13)

Q2 ´ BtM -0.22˚ -0.22˚ -0.19˚ -0.24˚˚ -0.23˚˚ -0.19˚

(0.12) (0.11) (0.11) (0.12) (0.11) (0.11)

Q2 ´ βSMB -0.17˚˚ -0.06 -0.11 -0.17˚ -0.06 -0.11

(0.09) (0.08) (0.08) (0.09) (0.08) (0.08)

Q3 ´ ME -0.58˚ -0.45 -0.28 -0.53˚ -0.40 -0.25

(0.30) (0.30) (0.29) (0.30) (0.30) (0.29)

Q3 ´ BtM -0.42˚˚˚ -0.27˚˚ -0.31˚˚ -0.44˚˚˚ -0.29˚˚ -0.33˚˚

(0.14) (0.14) (0.14) (0.14) (0.14) (0.14)

Q3 ´ βSMB -0.32˚˚˚ -0.19˚ -0.17˚ -0.31˚˚˚ -0.19˚ -0.16

(0.10) (0.10) (0.10) (0.10) (0.10) (0.10)

Q4 ´ Am.Liq 0.80˚˚˚ 0.29 0.07 0.83˚˚˚ 0.34 0.11

(0.30) (0.27) (0.28) (0.30) (0.27) (0.28)

Q4 ´ ME -0.88˚˚˚ -0.57˚ -0.30 -0.81˚˚ -0.50 -0.25

(0.34) (0.34) (0.33) (0.34) (0.34) (0.33)

Q4 ´ BtM -0.61˚˚˚ -0.52˚˚˚ -0.50˚˚˚ -0.63˚˚˚ -0.53˚˚˚ -0.51˚˚˚

(0.16) (0.16) (0.16) (0.16) (0.16) (0.16)

Q4 ´ βMkt -0.23˚ -0.29˚˚ -0.34˚˚˚ -0.22˚ -0.29˚˚ -0.34˚˚˚

(0.13) (0.13) (0.13) (0.13) (0.13) (0.13)

Q4 ´ βSMB -0.53˚˚˚ -0.33˚˚˚ -0.27˚˚ -0.52˚˚˚ -0.32˚˚˚ -0.26˚˚

(0.10) (0.11) (0.11) (0.10) (0.11) (0.11)

Q5 ´ Am.Liq -0.38 -0.75˚˚ -0.72˚˚ -0.33 -0.68˚ -0.67˚

(0.38) (0.36) (0.36) (0.38) (0.36) (0.37)

Q5 ´ ME -0.65˚ -0.38 -0.30 -0.62 -0.34 -0.27

(0.39) (0.39) (0.39) (0.39) (0.39) (0.39)

Q5 ´ BtM -0.44˚˚ -0.28 -0.33 -0.45˚˚ -0.30 -0.33

(0.21) (0.20) (0.20) (0.21) (0.20) (0.20)

Q5 ´ βMkt -0.38˚˚ -0.34˚˚ -0.40˚˚˚ -0.36˚˚ -0.32˚˚ -0.39˚˚˚

(0.15) (0.15) (0.14) (0.15) (0.15) (0.14)

Q5 ´ βSMB -0.67˚˚˚ -0.54˚˚˚ -0.48˚˚˚ -0.66˚˚˚ -0.52˚˚˚ -0.47˚˚˚

(0.13) (0.13) (0.13) (0.13) (0.13) (0.13)

Observations 1,060,913 1,039,901 1,039,901 1,060,913 1,039,901 1,039,901

R2 0.07486 0.06192 0.05646 0.07487 0.06194 0.05647

Date-Industry fixed effects      

Firm fixed effects      

Table 19: Explosiveness Up following SI dissemination. Least Square Estimates.

The table presents the predictive power of the short interest ratio in 10-day subsequent returns following the dissemination of short

interest (SI). The dependent variables are indicators of detecting an upward explosion over at least one of the five subsequent

(overlapping) 10-day intervals following the dissemination of short interest. See details in decription of Table 18
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Use Q-10 by SIR as High SI Use Q-10 by SIRpo as High SI

Dep.Var Expl.Up (%) Expl.Up CAPM-Adj. (%) Expl.Up FF3-Adj. (%) Expl.Up (%) Expl.Up CAPM-Adj. (%) Expl.Up FF3-Adj. (%)

(1) (2) (3) (4) (5) (6)

Q1 ´ IV ˆ High SI 1.0˚˚˚ 0.93˚˚˚ 0.68˚˚ 0.80˚˚˚ 0.92˚˚˚ 0.70˚˚˚

(0.31) (0.28) (0.26) (0.23) (0.21) (0.21)

Q2 ´ IV ˆ High SI 0.23 0.45˚˚ 0.06 0.21 0.53˚˚˚ 0.17

(0.20) (0.20) (0.20) (0.18) (0.18) (0.18)

Q3 ´ IV ˆ High SI 0.67˚˚˚ 0.34˚ 0.36˚˚ 0.67˚˚˚ 0.52˚˚˚ 0.47˚˚˚

(0.17) (0.18) (0.17) (0.17) (0.17) (0.17)

Q4 ´ IV ˆ High SI 0.22 0.43˚˚ 0.21 0.41˚ 0.54˚˚˚ 0.30

(0.20) (0.20) (0.19) (0.22) (0.21) (0.21)

Q5 ´ IV ˆ High SI 0.87˚˚˚ 0.64˚˚ 0.53˚ 1.3˚˚˚ 0.83˚˚˚ 0.88˚˚˚

(0.28) (0.29) (0.30) (0.31) (0.31) (0.32)

IV 20.3˚˚˚ 15.4˚˚˚ 15.7˚˚˚ 20.3˚˚˚ 15.4˚˚˚ 15.8˚˚˚

(4.8) (5.2) (5.1) (4.8) (5.3) (5.1)

Q2 ´ IV 0.13 0.06 -0.04 0.14˚ 0.07 -0.03

(0.08) (0.08) (0.08) (0.08) (0.08) (0.08)

Q3 ´ IV 0.07 0.01 -0.11 0.08 0.03 -0.09

(0.10) (0.11) (0.10) (0.11) (0.11) (0.10)

Q4 ´ IV -0.04 -0.09 -0.18 -0.05 -0.06 -0.16

(0.14) (0.14) (0.14) (0.14) (0.15) (0.14)

Q5 ´ IV -0.37˚ -0.22 -0.30 -0.38˚ -0.18 -0.31

(0.21) (0.23) (0.24) (0.21) (0.23) (0.23)

Observations 1,060,913 1,039,901 1,039,901 1,060,913 1,039,901 1,039,901

R2 0.07487 0.06192 0.05647 0.07488 0.06194 0.05648

Date-Industry fixed effects      

Firm fixed effects      

Table 20: Explosiveness Up interacted with IV following SI dissemination.

The table presents the predictive power of the short interest ratio interacted with idiosyncratic volatility in 10-day subsequent returns

following the dissemination of short interest (SI). The dependent variables are indicators of detecting an upward explosion over at

least one of the five subsequent (overlapping) 10-day intervals following the dissemination of short interest. Columns (1-3) and

(4-6) report the results for detection using raw price data (adjusted only for dividends and stock splits), CAPM-adjusted price data,

and FF3-adjusted price data, respectively. The first three columns present results where the Short Interest Ratio (SIR) is used to

select the top decile of heavily shorted stocks as the treatment group. The other three columns present results where the partialled-

out SIR is used. The control variables and fixed effects are consistent with the controls used for return regressions reported in Table

17. The sample period spans from 2003 to 2022, and statistical significance is indicated at the 10%, 5%, and 1% levels by ˚, ˚˚,
˚˚˚, respectively.
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Dep.Var Eα,up
s,d`1 ´ Eα,up

s,d´L

G = 1 day G = 2 days G = 3 days G = 5 days

Panel A: Using L “ 7

High SI 0.28˚˚˚ 0.32˚˚˚ 0.34˚˚˚ 0.33˚˚˚

(0.09) (0.10) (0.11) (0.12)

Observations 1,037,241 1,037,045 1,036,804 1,033,987

R2 0.04878 0.04941 0.04991 0.05040

Panel B: Using L “ 10

High SI 0.31˚˚˚ 0.39˚˚˚ 0.39˚˚˚ 0.44˚˚˚

(0.09) (0.10) (0.11) (0.13)

Observations 1,037,223 1,037,027 1,036,786 1,033,969

R2 0.04543 0.04733 0.04859 0.05003

Panel C: Using L “ 12

High SI 0.29˚˚˚ 0.36˚˚˚ 0.39˚˚˚ 0.51˚˚˚

(0.08) (0.10) (0.12) (0.13)

Observations 1,036,846 1,036,650 1,036,409 1,033,592

R2 0.04641 0.04896 0.05017 0.05091

Date-Industry fixed effects    

Firm fixed effects    

Table 21: Difference in Explosiveness Up around SI Dissemination

The table presents a fixed-effect regression analysis of the predictive power of the change in the short interest ratio on the probability

of detecting an upward explosion following the dissemination of short interest (SI). The dependent variables are indicators of

detecting an upward explosion over at least one of the G subsequent (overlapping) 10-day intervals following the SI dissemination.

These indicators are adjusted based on the same measure lagged by L days before the dissemination. Explosiveness is detected

at the 1%-significance level using k “ 1 and CAPM-adjusted stock prices. The control variables and fixed effects are consistent

with those used for the return regressions reported in Table 17, except for short-term reversal, which is lagged to just prior to date

d ´ L. The standard errors are two-way clustered by Date and Firm. The sample period spans from 2003 to 2022, and statistical

significance is indicated at the 10%, 5%, and 1% levels by ˚, ˚˚, ˚˚˚, respectively.
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Explosiveness Down Explosiveness Up

Dep.Var Eα,dn
s,d`1 ´ Eα,dn

s,d´12 Eα,up
s,d`1 ´ Eα,up

s,d´12

No adjustment CAPM-Adj. FF3-Adj. (%) No adjustment CAPM-Adj. FF3-Adj. (%)

(1) (2) (3) (4) (5) (6)

High SI 0.52˚˚˚ 0.73˚˚˚ 0.66˚˚˚ 0.34˚˚˚ 0.39˚˚˚ 0.46˚˚˚

(0.13) (0.12) (0.12) (0.12) (0.12) (0.12)

Turnover 6.2 3.1 2.1 4.0 3.1 3.2

(4.6) (3.6) (3.4) (3.5) (3.8) (3.3)

IV -1.7 0.32 -5.1 -0.003 -2.8 3.4

(6.2) (5.8) (5.9) (5.0) (5.7) (5.2)

Am.Liq -0.002 -0.002 0.002 -0.005 -0.003 -0.005

(0.006) (0.005) (0.005) (0.005) (0.005) (0.005)

Log-Size -0.06 0.07 -0.02 -0.01 0.001 0.13

(0.19) (0.14) (0.12) (0.11) (0.12) (0.11)

BtM 0.04 -0.03 -0.09 -0.04 0.04 0.07

(0.13) (0.13) (0.12) (0.10) (0.10) (0.11)

∆ Assets -0.03 0.002 0.03 0.06 0.08 0.05

(0.08) (0.07) (0.07) (0.05) (0.05) (0.05)

Op. Prof -0.03 0.02 0.005 -0.06˚˚ -0.03 -0.009

(0.04) (0.04) (0.04) (0.03) (0.03) (0.03)

IOR 0.32 0.32 0.18 -0.007 -0.26 -0.47˚˚˚

(0.26) (0.25) (0.25) (0.21) (0.19) (0.18)

STReversal 0.53 1.5˚˚˚ 1.3˚˚˚ 0.20 -0.02 -0.05

(0.58) (0.48) (0.44) (0.40) (0.40) (0.37)

Momentum 0.12 -0.11 -0.07 0.22 0.22 0.08

(0.20) (0.17) (0.16) (0.14) (0.15) (0.13)

Q2 ´ βHML 0.10 0.18 0.22˚ -0.10 -0.06 -0.06

(0.13) (0.13) (0.12) (0.09) (0.10) (0.09)

Q3 ´ βMkt 0.23 0.25˚ 0.38˚˚ 0.04 0.04 -0.04

(0.16) (0.15) (0.16) (0.11) (0.11) (0.10)

Q4 ´ IV 0.33 0.46˚˚˚ 0.47˚˚˚ 0.16 0.20 -0.03

(0.22) (0.18) (0.16) (0.14) (0.15) (0.14)

Q5 ´ IV 0.32 0.40 0.50˚ 0.20 0.32 -0.02

(0.33) (0.28) (0.27) (0.23) (0.25) (0.24)

Standard-Errors Date Date & Firm

Observations 1,057,387 1,036,409 1,036,409 1,057,387 1,036,409 1,036,409

R2 0.10650 0.06103 0.05441 0.05792 0.05017 0.04433

Date-Industry fixed effects      

Firm fixed effects      

Table 22: Difference in Explosiveness around SI Dissemination

The table presents a fixed-effect regression analysis of the predictive power of the change in the short interest ratio on the change

in the probability of detecting an explosion, either up (in the last three columns) or down (in the first three columns). This analysis

covers at least one of the three subsequent overlapping 10-day intervals following the dissemination of short interest (SI). The

dependent variable is the explosiveness indicator over G “ 3 10-day intervals, adjusted by the indicator of an explosion lagged 12

days before the dissemination. The control variables and fixed effects used in this analysis are consistent with the controls employed

for the return regressions reported in Table 21. Only continuous or statistically significant control variables are reported.
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Others High SIR Change

Before After Difference Before After Difference

r̄t,t`l (%) -0.04 -0.03 0.01 -0.05 -0.33 -0.28

s.d. (%) 0.31 0.31 0.00 0.35 0.35 0.00

Minp%q -2.50 -2.50 -0.01 -2.75 -2.83 -0.08

Q0.1 (%) 0.25 0.25 0.00 0.30 0.30 0.00

Q0.9 (%) -0.25 -0.25 0.00 -0.30 -0.30 0.00

Maxp%q 2.54 2.56 0.02 2.81 2.85 0.04

Skew 0.11 0.13 0.01 0.14 0.08 -0.05

Kurt 38.62 38.65 0.03 37.40 40.26 2.86

Explosiveness Up 2.53 2.59 0.07 2.58 2.88 0.31

Explosiveness Down 3.20 3.28 0.08 3.10 3.51 0.42

Table 23: Moments of HF returns around SI dissemination

The table presents the average change in high-frequency stock moments around the SI dissemination date. The first three columns

represent the average change for the returns of the stocks in the bottom 9 deciles sorted by the partialled out SIR. The other three

columns present results for the returns of the top decile by SIR. The first and the second of the three columns in each group report

the average statistics measured over a 10-day interval prior to and after the dissemination of SI data. The last columns report the

difference between the values. The first row reports the average log-return over the 10-day interval. The next 7 rows report the

averages of standard deviation, minimum, maximum, 10th and 90th percentiles, skewness, and kurtosis estimated based on the

intraday log-returns within the 10-day window. The last two rows report the average frequency of detection of explosiveness up

and down within the interval estimted using the SADF procedure with a significance level of 1% and lag order k “ 1. All variables

but kurtosis and skewness are reported in percentage terms. The frequency of observations is 5 minutes per day, incorporating nine

overnight returns from 16:00 to 9:40 of the next day, resulting in a total of 770 observations.

117



Dep.Var Change in the variable

r̄t,t`l (%) s.d. Maxp%q Minp%q Q0.9 (%)$ Q0.1 (%)$ Skew (%) Kurt (%)

(1) (2) (3) (4) (5) (6) (7) (8)

High SI -0.37˚˚˚ 0.002˚˚˚ 0.03˚˚ -0.08˚˚˚ -0.0009˚˚ 8.7 ˆ 10´5 -5.7˚˚˚ 281.8˚˚˚

(0.08) (0.0007) (0.01) (0.01) (0.0004) (0.0003) (2.2) (35.5)

Observations 1,058,189 1,058,189 1,058,189 1,058,189 1,058,189 1,058,189 1,058,189 1,058,189

Squared Correlation 0.29843 0.22185 0.12219 0.11655 0.38780 0.40353 0.08207 0.07301

Date-Industry fixed effects        

Firm fixed effects        

Table 24: Change of Empirical Moments of HF returns around SI dissemination

The table presents a fixed-effect regression analysis that examines the predictive power of the change in the short interest ratio

on the change in the empirical moments of high-frequency returns estimated over 10-day intervals following the dissemination of

short interest (SI). The dependent variables represent the difference in the estimates of various return measures specified in the

header of the table over a 10-day period before the dissemination date and a 10-day period after the dissemination, excluding the

dissemination date itself. The specific return measures are detailed in Table 17. The control variables and fixed effects used are

consistent with those employed in other analyses reported in Table 17, with the exception of short-term reversal, which is lagged

to just prior to date d ´ L. Standard errors are two-way clustered by Date and Firm. The primary explanatory variable is the

indicator for being in the top decile by the partialled out Short Interest Ratio (SIR). The sample period spans from 2003 to 2022,

and statistical significance is indicated at the 10%, 5%, and 1% levels by ˚, ˚˚, ˚˚˚, respectively.
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Gaussian Bootstrap Stoch. Vol. Actual Data

Expl RW Const Cofs AR Overnight No AR No Drift Drift Overnight Heston Actual

Correctly Specified

Down 0.46 0.46 0.72 0.54 0.98 0.98 1.35 1.41 1.22 3.26

Up 0.45 0.44 0.62 0.49 0.98 0.97 1.32 1.36 1.29 3.11

Using more lags

Down 0.48 0.47 0.75 0.55 1.00 0.99 1.38 1.45 1.21 3.26

Up 0.50 0.49 0.64. 0.51 1.02 1.01 1.36 1.40 1.30 3.11

Misspecified by one lag

Down 0.41 0.30 0.55 0.41 0.95 0.84 1.15 1.18 1.01 3.26

Up 0.42 0.27 0.48 0.38 0.92 0.82 1.11 1.15 1.07 3.11

Table 25: Alpha of the test based on simulations

This table presents the results of SADF test size across various simulations. The probability of detecting explosion up and down

at 1% significance level is expressed in percentage points for each specification. The first four columns pertain to simulations with

Gaussian standard errors, where error moments are calibrated to actual TAQ data. RW stands for the random walk model with zero

drift and autocorrelation. Const Cofs attributes constant autocorrelation equal to the median re-estimated autocorrelation coefficients

(φ -s) in the population. AR randomly draws coefficients from the empirical distribution of pre-estimated parameters. The Overnight

specification incorporates scheduled (overnight) Gaussian jumps drawn based on the pre-estimated overnight average and standard

deviation that define the distribution. The intraday residuals are drawn based on intraday observations only. The subsequent four

columns pertain to simulations using error terms drawn from the actual distribution of errors. The overnight specification involves

simulations that incorporate overnight jumps based on the overnight distribution of returns. The stochastic volatility specification

involves simulations with errors following the Heston stochastic volatility model, which is pre-estimated on TAQ data using GMM.

The final column represents the frequency of detecting explosiveness based on actual data. The sample size consists of 100,000

observations per year (from 2004 to 2022), totaling 1,900,000 observations in all. The simulations were performed on non-filtered

sample for k “ 2. The statistics for actual data are based on non filtered data as well.
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Figure 23: Idiosyncratic Variance Share by explosive events

The figure illustrates the proportion of idiosyncratic variance ascribed to the dates when explosions are detected. Explosions are

identified using FF-3 adjusted prices, with a significance level of detection set at 2.5%, and lag order k “ 1. The stocks are pre-

classified into three equal groups based on day-specific size, measured 30 days prior. The shares for the smallest (largest) stocks

are reported in Panel 1 (3). As small stocks are more susceptible to exclusion during cleaning procedures, the primary sample is

predominantly composed of medium and large stocks. For further details on the sample, refer to Table 13.

121



5

10

15

20

2005 2010 2015 2020

%
 
c
a
s
e
s

Sign. Lvl
SL = 1%
SL = 5%
SL = 10%

Lag Order
0
1
2
3
4
BIC

All Stocks
Stock Explosiveness in 2003−2022

Figure 24: Rate of Detection

This figure illustrates the occurrence frequency of individual stock explosions during random 10-day intervals, organized by the

year of observation. Various colors and linetypes represent distinct hyperparameters, including significance level and lag order,

employed for the detection process. The BIC lag-order specifically reflects detection outcomes based on a model with k selected

by Baysessina Information Criterion.
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Figure 25: Price, pptq, profit, πptq, and reversalptq depending on α´1

This figure illustrates the sensitivity of price, profit, and relative reversal to the knowledge possessed by insiders, which is captured

by α´1. The other parameters replicate the suggested parameters from the numerical example in 8.3.
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A1 Appendix

A1.1 Data

This paper places a strong emphasis on data analysis and stands out as one of the few recent studies fo-

cusing on extensive, long-term time series panel data. Covering a 20-year dataset of the entire U.S. stock

market, supplemented by an additional 10 years of data provided in the supplementary section, this research

takes a different path compared to most literature. Many studies tend to concentrate on short spans of

high-frequency data spanning only a few years or even just months, or they narrow their focus to specific

individual stocks mainly due computational limits.

In light of the paper’s reliance on explosive measures, which exhibit heightened sensitivity to data quality

(more so than conventional metrics like volatility), meticulous data cleaning checks and precise alignment

across various data sources were of paramount importance. This section of the appendix provides a com-

prehensive overview of these critical data cleaning procedures: covering pre-SADF estimation procedures

and post-selecting cleaning procedures, emphasizing their pivotal role in ensuring the trustworthiness and

precision of the dataset used for the study’s analyses.

A1.1.1 Selection procedure

To be included for further analysis on a given day, the stock must meet one of the following criteria.

• The stock is a common share (CRSP’s share code 10, 11) that is traded at either NYSE, NASDAQ, or

AMEX (CRSP’s exchange code 1,2,3). (Across the most of the specifications, I focus solely on those

stocks but other groups were included for SADF estimation).

• The stock is included in the Standard and Poor’s 500 stock market index.73

• The stocks have traded options at NASDAQ reported in the Ivy DB database of OptionMetrics.

The stock must also match a unique CRSP record.74 I further verify that the databases record are

consistent with each other.
73there are a few examples that do not meet first criteria among the stocks, since the companies are incorporated outside the US
74i.e., we require existence of CRSP permno that matches the observation. For example, some of IVY DB’s securities are not

matched.
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A1.1.2 Matching TAQ and CRSP

The provided matching between TAQ and CRSP data falls short in covering a substantial portion of the

sample. On average, this matching does not encompass approximately 14.26% of stocks in terms of mar-

ket capitalization, with the maximum gap reaching 17.41%. This limitation may present difficulties when

creating high-frequency factors and could result in data gaps for stock observations. These gaps, in turn,

might necessitate the exclusion of a notable portion of SADF-estimates, particularly given the requirement

to observe stocks over a 30-day period.

To overcome the issue, I develop a matching procedure that covers approximately 99.99% of common

shares (code 10, 11) traded on NYSE, AMEX, or NASDAQ from CRSP. To enhance the matching provided

by WRDS and ensure accuracy, I have developed a custom procedure based on open and closing prices for

TAQ and CRSP. This meticulous approach ensures that the analysis includes the majority of relevant data,

providing a robust foundation for the study.

• Out of a total of 22,354,479 stock-day observations from CRSP, only 39,800 stocks did not have

a matched TAQ identifier (sym_root, sym_suffix). Furthermore, among these observations, 33,582

correspond to common shares traded on NYSE, AMEX, or NASDAQ. This indicates that the vast

majority of stock-day observations have been successfully matched with TAQ identifiers.

• The procedure ensures that the minimum daily market share in terms of market capitalization covered

is 99.79%, with an impressive average market share coverage of 99.99%. This demonstrates the com-

prehensive nature of the procedure in capturing market capitalization data, making it highly reliable

for the analysis.

• Figure A1.1 shows the market share of covered stocks.
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Figure A1.1: Coverage of CRSP data by TAQ

The figure illustrates the cumulative market capitalization share captured by each step of the matching procedure. In this represen-

tation, “0” corresponds to the default matching provided by WRDS, while “1-5” correspond to the additional steps implemented by

myself. This visual provides insights into how each step contributes to the overall coverage of market capitalization in the analysis.

DETAILS TO BE ADDED

A1.1.3 Building Price Time series

I collect high-frequency price data using the New York Stock Exchange Trade and Quotes (NYSE TAQ)

Database. It is well-known that TAQ data suffers from market microstructure noise (e.g., Da and Xiu 2021).

The explosiveness measure is sensitive to temporary price mismeasurements. For instance, including short-

lived, significant mispricings, such as two consecutive substantial price fluctuations upward and downward,

can lead to both false detections of an explosion and a dilution of genuine explosive patterns.

Here are the steps that were applied to build the price time series used in the paper. The initial step

involved retrieving open daily price data from CRSP, which was utilized until the first trading record from

CTM within the regular trading hours (9:30-16:00) was available. For other intraday data, two primary TAQ

sources were considered: NBBOM and CTM, with a deliberate preference given to CTM data for its higher

accuracy in reflecting real price of the asset.

Within defined x-minute intervals, a methodical process was employed to identify the most recent trade
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recorded in the CTM dataset that met specific criteria, including being within the bid-ask spread recorded

from NBBO. In situations where no trade price was available within the designated timeframe in CTM, the

last NBBOM midquote price was judiciously adopted as an alternative, ensuring dataset continuity even

when trade data was sparse.

To be included in the refined dataset, selected midquote prices were subjected to two conditions. Specif-

ically, the price was required to remain within a 2.5% threshold of the last CTM trade price, effectively

filtering out data points with potential market structure noise—those deviating significantly from recent

trade price. Furthermore, the midquote price was used only if the relative bid-ask spread, with the last trade

price as the denominator, was less than 2.5%.

A1.1.4 Pre-estimation bounce-back filter

A bounce-back filter is applied before estimating the SADF over an l-days estimation window. Starting at

t0 ` 1, log-returns for the stock, denoted as rt , for time periods t0 ` 1 through T are calculated. As we move

from t0 to T , if the absolute value of rt exceeds 2.5%, a check is implemented to ensure it is not due to

microstructure noise. The first occurrence, denoted as t̄, where Pt ‰ P̄t is found. Then, a check is conducted

as follows:

• If Pt´1 “ P̄t , then the prices are adjusted as follows:

Pt :“ Pt`1 :“ . . . P̄t´1 :“ P̄t (A1.1)

, This means that if the price exactly reverses back, the previous return is not counted.

• Additionally, if |rt | exceeds 5%, which is considered an extreme return over one period, an extra test is

applied. It checks if ´rt̄´1,t̄{rt´1,t ą 80%, meaning if the stock reverses by at least 80% immediately

after. If this condition is met, the same rule (??) applies.

It is worth noting that this procedure can generally be implemented in real-time when conducting the

SADF test.75

A1.1.5 Additional Post-SADF estimation cleaning. Liquidity Check

To concentrate on liquid stocks and prevent the artificial detection of explosions when the stock price remains

predominantly flat, a liquidity filter is applied after estimation. I exclude observations where a stock had

75In the initial version of the results, the test was not used, and only the post-estimation bounce-back test was employed. This

adjustment did not significantly alter the results, with less than 1% of new explosion detections being added or removed as a result.
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fewer short intervals over which the price changed before the detection event than intervals over which the

return was non-zero. This filter helps ensure that the detected explosions are associated with liquid stocks

and not driven by negligible price fluctuations. The liquidity filter results in the exclusion of a significant

portion of observations, primarily in small stocks. To ensure an appropriate comparison between explosion

dates and non-explosive dates, I apply a similar within-day filter to other stock-day observations.

Additional cleaning procedures are carried out upon detecting jumps or explosions within the dataset.

In the event that one of these occurrences is identified, an additional step is taken to assess the absence of a

bounce back around the detection event. This issue arises when a price briefly deviates significantly, either

due to a wide spread or an irregular trade on the exchange. Neglecting to address this issue can result in an

artificial immediate reversal in the data following the event, along with abnormal price drops or increases

occurring just before the event.

The major check for bounce is the following. First, to compare the return at the time of detection of

jump or explosion with a 5 standard deviation threshold76, and if it exceeds this threshold in absolute terms,

further examinations are conducted. Specifically, for cases where the return surpasses the 5 s.d. threshold,

the first check involves ensuring that when the price changes subsequently, the return does not immediately

reverse by more than 0.75 times the original return.77 This verification process is carried out in both forward

and backward directions, ensuring that no immediate bounce back occurred. It is worth noting that the

backward procedure is particularly relevant for jumps rather than explosions since detecting of explosion is

almost impossible just after two subsequent jumps in different direction.

Furthermore, for returns exceeding 5%, a more robust check is implemented to confirm the absence of

a similar 0.75 times reversal within the next 10 time periods (equivalent to 50 minutes if within the same

trading day). This extended examination allows for a more extended observation window to detect any

potential reversals when the return is particularly big.

After conducting an extensive visual examination of the data, coupled with statistical checks for anoma-

lies, it was determined that the combination of the bounce tests and the original TAQ data cleaning pro-

cedures suffices to eliminate the most suspicious price movements. This approach effectively allows us

to concentrate on identifying jumps and explosions that are not primarily driven by microstructure noise,

ensuring a more robust dataset for our analysis.

For the average dynamic plots and their corresponding summaries concerning stock price fluctuations,

we excluded instances where a stock had a one-period return exceeding 100% within a 30-day period.

76The standard deviation is measured based on the 10 days sample before the explosion period.
77similar to check in (A1.1)
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This filter eliminates a very small number of extreme cases that raise suspicions about the accuracy of the

returns. Some of these cases could be attributed to incorrect TAQ records, where multiple tickers (defined

by sym_root and sym_suffix) appear to be associated with different stocks on different exchanges but are

merged into a single asset in NBBOM. Additionally, some cases may be linked to discrepancies between

stock splits and dividend records in CRSP compared to TAQ data. Further investigation of these cases is

warranted.

Finally, using a 30-day period for calculating the average dynamic also imposes an additional require-

ment for price data following an explosion or jump. Consequently, the sample may be slightly affected by

survivorship bias in the event of company defaults

A1.1.6 TAQ: cleaning before 2003 and first version of the paper

This paper and its results has been circulating before with the prices identified solely based on mid-quote

prices. As discussed in the previous section, the most of the findings of the paper stay robust to the old spec-

ification, though mid-quotes guaranteed slightly higher detection rate of explosiveness. In this subsection, I

will cover the alternative cleaning procedure.

Prior to September 10, 2003, TAQ data did not include National Best Quotes. However, during this

period, files containing recorded quotes (CQ) and trade (CT) data are available. To construct explosive

measures during this timeframe, I relied on the CQ data, with a preference for records originating from

exchanges designated as primary exchanges in the CRSP (Center for Research in Security Prices) database.

Though one might be more interested in focusing on a particular side of a spread, for example, using ask-

price when detecting explosion up, this approach turns out to be too noisy for most stocks. The reason is that

the spread significantly widens regularly because of intraday dynamics. That creates significant volatility

in stock that kills the detection of explosiveness. Using trade prices only, one will miss explosiveness over

an illiquid period for the stocks. That is why I use mid-quote prices as the primary price measure. The

mid-quote prices seem to have less spurious volatility.

Consistent with other high-frequency literature, I exclude all data in non-trading hours, i.e., between

16:00 and 9:30 of the next day. Most stocks tend to have extremely wide bid-ask spread in the opening

hours, especially in the first 5-10 trading minutes. To avoid spurious jump prices, I exclude the time interval

from 9:30 to 9:40, working with prices from 09:40 to 16:00.

Before estimating explosiveness measures and building high-frequency returns, I impose a bunch of

filters to suppress quotes that might be spurious and to minimize the problem of bid-ask bounce. The

following procedure was adapted:
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Step.1 For each date and available pair of exchange (ex) and stock (sym_root), the quotes data (cqm) is

imported at 30 seconds frequency, forming at most 390 observations within the 09:30-16:00 interval.

I import only the last quotes observation within the time interval.

Step.2 The primary exchange is identified according to CRSP data (CRSP’s primexch78). Suppose stock has

at least 195 observations within the 09:30-16:00 interval recorded at the primary exchange. In that

case, I use only those records for further analysis79. If there are less records, then I incorporate data

from other exchanges as well, according to the procedure:

• select exchanges that have at least 10 daily observations

• make sure that the average prices recorded at the selected exchanges are not significantly differ-

ent from close price recorded by CRSP at primary exchange80. Exclude exchanges that do not

meet the criteria.

This procedure is targeted not to ignore stocks if they were not traded actively and roughly saves 20%

daily TAQ observations. Since the explosion measure requires consistent data over 5/10 consecutive

days, the procedure holds a substantial share of data, specifically stock in non-explosive, non-volatile,

or illiquid periods. Exclude exchanges that do not meet the criteria.

Step.3 I iteratively remove observations if price experiences log-change of 2.5% over 30 seconds interval.

The last cleaning step potentially hurts extreme explosive and price jump episodes. At the same time,

looking at the known extreme explosive episodes such as GME, I noted that even they are not excluded if

we use the filter. The cleaning step targets mainly observations when the reasonable order on the best bid

or ask temporarily disappears, which happens regularly for less liquid stocks. Ignoring the cleaning action,

one would observe regular jumps in the price.

A1.1.7 Splits and Distribution adjustments

An overnight stock split or distribution might cause significant jump in the stock price, disturbing the es-

timated explosiveness coefficient and corresponding p-value. To handle it, I use overnight adjusted stock

78note that for some stocks there is an inconsistency between NASDAQ’s naming T and Q by TAQ and CRSP respectively. The

identifiers are used interchangeably.
79that guarantees that prices for big and liquid stocks come from primary exchange only removing concerns about inconsistency

of trading prices between the exchanges
80formal selected critirea is that the absolute log difference must be less than 2.5%
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prices after the event. For example, if I estimate explosiveness of a stock price sequence over d “ 5 day in-

terval with f “ 5 minutes that starts at P1 and experience split 2:1 at day 3, then I likely to observe significant

change betIen Ps,158 and Ps,159
81. Hence, estimating (1) I use

Pad j
s,t “

$

&

%

Ps,t , for t “ 1 ď t ď 158

2 ˆ Ps,t , for t “ 159 ď t ď 395

Similarly, if stock has a distribution Ds,t1 betIen t “ t 1 and t “ t 1 ` 1.

Pad j
s,t “

$

&

%

Ps,t , for t “ 1 ď t ď 158

Ps,t ` Ds,t1 , for t “ 159 ď t ď 395

Similar adjustments were implemented over the 30-days window for the results

A1.1.8 Non-overlapping procedure

The SADF detection naturally captures the same explosive event from different starting points in time. For

instance, in a simulation involving 100,000 days of a random walk with 77 time-intervals per day (corre-

sponding to the real data specification of 10 days with 5-minute intervals), 4,413 explosions were detected

at the 5% significance level. However, only 2,003 of these days were actually considered as explosive82.

This discrepancy arises because there is an overlap between the days that are detected as explosive.

A similar phenomenon occurs in real data. Moreover, it raises question about whether two explosive

events detected in subsequent order should be considered independent events from an economic perspective.

To address this concern when analyzing reversals and other events around explosions, I implemented a

procedure to isolate the explosive events.

Starting from the first day a stock appears in sample, I proceed with daily steps to estimate SADF. Once

an explosion is detected at a significance level of α , I record information about the explosion, such as DE,

EE, LE, p-value, and so on. Afterward, I attempt to find the next detection of an explosive event. If the next

detection occurs within less than l days after the previous record, I exclude it from consideration. Otherwise,

I make a new record from it and use it as the new reference point.

81for d “ 5 and f “ 5, one day consists of 79 = 12*6 + 7 time intervals, t “ 158 and t “ 159 correspond to 16:00:00 of second

day and 09:30:00 of third day respectively.
82meaning that they contain DE
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Figure A2.2: Around Explosions and Jumps

The explosive intervals are selected using a non-overlapping procedure. Additionally, the ten-day intervals before and after the

explosive interval are chosen for the same stocks. For a stock to be considered, it must have reliable price data for a thirty-day

interval and an initial price of at least $5.

A2 Average dynamics

In this appendix, section I provide more details on average dynamics around explosion.
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,

Figure A2.3: Around Explosions and Jumps with risk-adjustment, 2018-2022

The explosive intervals are selected using a non-overlapping procedure. Additionally, the ten-day intervals before and after the

explosive interval are chosen for the same stocks. For a stock to be considered, it must have reliable price data for a thirty-day

interval and an initial price of at least $5. For construction of this figure, we use subsample of the last 5 years of the data (2018-

2022).
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Figure A2.4: Alternative definitions of jumps

The top two panels depict jumps determined by comparing returns to the average intraday volatility of returns. The average is

computed over the preceding 30 days of observations, with volatility defined as the square root of realized squared log-returns. In

the top panel, jumps are identified as those exceeding 15 standard deviations, while in the second panel, jumps are identified as

those exceeding 9 standard deviations. The bottom panel classifies jumps as any return with a magnitude exceeding 5%.
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Figure A2.5: Alternative definitions of jumps

The top three panels depict the average price dynamics for the Big stocks. The bottom three panels depcit for small stocks. classified

according to
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N obs. Price Ask Bid Rel. Spread Hold Buy-Sell Sell-Buy

Explosion Up

10 days before 199,284 -0.05 0.12 -0.22 0.34

at explosion 199,284 6.56 6.76 6.36 0.36 6.61 6.24 -6.98

10 days after 199,284 5.48 5.65 5.31 0.33 -1.08 -1.45 0.71

Explosion Down

10 days before 232,066 -0.04 0.12 -0.2 0.32

at explosion 232,066 -5.79 -5.61 -5.97 0.39 -5.75 -6.09 5.41

10 days after 232,066 -4.73 -4.56 -4.89 0.35 1.07 0.72 -1.41

Jump Up

10 days before 135,323 -0.04 0.49 -0.57 1.05

at jump 135,323 6.64 7.3 5.98 1.26 6.68 5.49 -7.87

10 days after 135,323 6.22 6.73 5.7 1 -0.43 -1.61 -0.75

Jump Down

10 days before 124,453 -0.04 0.47 -0.54 1.01

at jump 124,453 -6.32 -5.63 -7.02 1.47 -6.29 -7.49 5.09

10 days after 124,453 -5.8 -5.28 -6.31 1.08 0.53 -0.68 -1.74

Note:

The explosive intervals are selected using a non-overlapping procedure. Additionally, the ten-day

intervals before and after the explosive interval are chosen for the same stocks. For a stock to be

considered, it must have reliable price data for a thirty-day interval and an initial price of at least $5.

The first 3 columns report the average total return that one would earn at each point of time if invested

into assets 10 days prior the beginning of the estimation period.

Table A2.1: Cumulative FF5-Adjusted Return Statistics over 2003-2022,
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A3 Market Explosiveness
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Figure A3.6: Empirical cumulative distribution function of p-values of market explosiveness
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Figure A3.7: Empirical probability distribution function of p-values of 24 portfolios

A4 Characterization of explosiveness in stocks

A4.1 Other Descriptives of Explosiveness

The employed firm characteristics are consistent with those utilized in Freyberger et al. (2020). For a more

comprehensive description, please refer to the Appendix of Freyberger et al. (2020). A brief overview is

presented in Table A4.2. Firms lacking at least one of the variables or clean data in TAQ were excluded

from further analysis in this section. The sample comprises 1,575,707 (1,519,634) stock-week observations

when conducting the analysis for no adjustment (FF3-adjusted) stocks. w52h, mktcap, strev, ltrev, intmom,

and mom are all calculated at a weekly frequency prior to the week of interest based on CRSP data. The

other firm characteristics are constructed based on Compustat and CRSP data at a monthly frequency

The variables are CS-normalized before being used in the analysis of this section. CS-normalization

occurs at the beginning of the calendar week by sorting all considered firms based on a characteristic and

assigning the respective rank i. The normalized value is then defined as

CS normalized value “
i ´ 1

# of stocks for the week
´ 0.5.
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Combining all firm characteristics for stock s and week w into one vector yields xs,w within the r´0.5,0.5s34

hypercube. The primary specification, covered in the text and reported in Tables 14 and 15, involves fitting

the logistic distribution of explosiveness:

PpEα,dir
s,w “ 1q “ pLogpβ0 ` β1xs,wq “

1
1 ` e´pβ0`β1xs,wq

, dir “ up, down (A4.2)

Here, Eα,dir
s,w is an indicator of detecting an explosion over the week w, and pLog is the logistic function. The

likelihood optimization is equivalent to the minimization problem:

min
β0,β

ÿ

s,w

l
`

Eα,up
s,w ,β0 ` βxs,w

˘

` λ
“

p1 ´ αq}β}2
2{2 ` α}β}1

‰

(A4.3)

for λ “ 0, and the negative log-likelihood function l, also known as cross-entropy:

lpy,θq “ ´y ln pLogpθq ´ p1 ´ yq ln
`

1 ´ pLogpθq
˘

.

The second to fourth columns in Tables 14 and 15 report the coefficients of Elastic Net that minimizes

(A4.3) for the penalty hyperparameter λ ą 0. The reported results differ based on the hyperparameter α: the

second, third, and fourth columns correspond to α “ 0 (Ridge penalty), α “ 0.5, and α “ 1 (Lasso penalty)

respectively. The exact parameter λ is determined through 10-fold cross-validation tuning for elastic net.

For a detailed understanding of how cross-validation tuning works, please refer to Hastie et al. (2009).

In the provided estimates, we used a significance level of detection of 0.025 and a no-adjustment spec-

ification for explosion detection. Tables A4.3 and A4.4 provide similar results based on FF3 adjustment of

prices prior to detection. The major difference for explosion up appears in the market cap and assets. While

the latter was not an important significant contributor in the no-adjustment specification, in the FF3-adjusted

specification, it replaces the market cap as the main descriptive variable. Also, the coefficients on standard

unexplained volume and turnover are more pronounced for the FF3 specification. FF3-adjusted specification

has a large coefficient on bidask. The book-to-market ratio has a smaller effect for FF3 adjustment. Return

on net assets has a larger economic magnitude for the FF3 specification. Other coefficients have similar

economic magnitudes between the two specifications.

Similarly, explosiveness downward exhibits larger magnitudes in coefficients on assets and bid-ask

spread. Similar to the no-adjustment case, the market cap appears with a significant positive sign if no

penalty is introduced but shrinks to zero in elastic net regressions. Past performance characteristics such

as momentum, closeness to the 52-week high, and intermediate momentum have an even larger magnitude

for FF3-adjusted estimated explosiveness. The coefficients on return on equity, unexplained volume, and
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turnover are also more pronounced, although return on equity is not robust to the introduction of a penalty.

The coefficients on betamkt and betasmb are economically and statistically significant with a different sign

and different magnitude compared to the no-adjustment case. This could be an effect of contamination of

price data by factor-adjustment.
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Firm Characteristic Description

a2me Assets-to-market cap.

assets Total assets (AT) as in Gandhi and Lustig (2015).

ato Net sales over lagged net operating assets.

bm Ratio of book value of equity to market value of equity.

betahml Beta on HML factor, product of Fama and French (1992) model over prior 252 business days.

betamkt Beta on Excess Market return, product of Fama and French (1992) model over prior 252 business days.

betasmb Beta on SMB factor, product of Fama and French (1992) model over prior 252 business days.

bidask Average monthly bid-ask based on daily CRSP data (following Chung and Zhang (2014)).

c Ratio of cash and short-term investments (CHE) to total assets (AT).

cto Capital turnover.

e2p Earnings to price.

freecf Cash flow to book value of equity.

idiovol Idiosyncratic volatility; based on residuals from Fama and French (1992) over prior 252 business days.

intmom Intermediate-term momentum, calculated as the total return from 7 to 12 months ago (126 to 252 business days)

invest Investment

lev Leverage

ltrev Long-term reversal calculated as the sum of monthly returns from 13 to 60 months ago

mktcap Market capitalization; the CRSP-based product of shares outstanding (SHROUT) and price (PRC).

mom Momentum, calculated as the sum of monthly returns from 2 to 12 months ago (21 to 252 business days)

noa Net operating assets

oa Operating accruals

ol Operating leverage

pcm The price-to-cost margin

prof Profitability

pm Pre-tax profit margin, the ratio of pre-tax income (PI) to sales (SALE).

q Tobin’s q

rna The return on net operating assets

roa Return-on assets

roe Return-on-equity

s2p Sales-to-price

strev short-term reversal: lagged 1 month (20 business days) return

suv Standard unexplained volume.

turn Turnover, defined as last month’s volume (VOL) over shares outstanding (SHROUT).

w52h 52-week high, the highest end-day stock price over the past 52 weeks divided by the spot price.

Table A4.2: Firm Characteristic Descriptions

The table below provides definitions for the firm characteristics used in Section 5.4. The standard definitions follow Freyberger

et al. (2020); refer to their appendix for more details. I have provided additional details when the definitions might deviate slightly

from the paper.
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Logit Ridge ENet Lasso

Variable Estimate (Q5, Q95) Estimate (Q5, Q95) Estimate (Q5, Q95)

Intercept -2.74 (-2.75, -2.74) -2.74 (-2.75, -2.74) -2.74 (-2.75, -2.74) -2.74 (-2.75, -2.74)

a2me -0.01 (-0.02, -0.01) 0.02 (0.01, 0.04) 0.00 (-0.01, 0.00) 0.00 (-0.01, 0.00)

assets -0.34 (-0.43, -0.24) -0.17 (-0.19, -0.13) -0.24 (-0.31, -0.14) -0.25 (-0.34, -0.16)

ato 0.01 (-0.03, 0.06) 0.00 (-0.03, 0.02) 0.00 (-0.01, 0.01) 0.00 (-0.02, 0.01)

betahml -0.05 (-0.08, -0.03) -0.05 (-0.08, -0.03) -0.04 (-0.06, -0.02) -0.04 (-0.06, -0.02)

betamkt -0.15 (-0.18, -0.13) -0.13 (-0.15, -0.10) -0.14 (-0.16, -0.11) -0.14 (-0.16, -0.11)

betasmb -0.05 (-0.08, -0.03) -0.03 (-0.04, 0.00) -0.04 (-0.07, -0.02) -0.04 (-0.07, -0.02)

bidask -0.24 (-0.29, -0.18) -0.14 (-0.17, -0.11) -0.16 (-0.21, -0.09) -0.17 (-0.22, -0.11)

bm -0.06 (-0.12, 0.00) -0.05 (-0.07, -0.02) -0.03 (-0.06, 0.02) -0.02 (-0.04, 0.05)

c -0.01 (-0.05, 0.03) 0.01 (-0.01, 0.04) 0.00 (-0.02, 0.01) 0.00 (-0.01, 0.01)

cto -0.02 (-0.11, 0.06) -0.00 (-0.03, 0.02) 0.00 (-0.01, 0.01) 0.00 (0.00, 0.01)

e2p -0.13 (-0.18, -0.08) -0.09 (-0.12, -0.07) -0.09 (-0.13, -0.05) -0.09 (-0.13, -0.05)

freecf -0.03 (-0.07, 0.01) -0.02 (-0.04, 0.01) 0.00 (0.00, 0.03) 0.00 (0.00, 0.03)

idiovol 0.09 (0.05, 0.12) 0.08 (0.06, 0.11) 0.07 (0.04, 0.10) 0.07 (0.04, 0.10)

intmom 0.13 (0.10, 0.17) 0.07 (0.05, 0.10) 0.07 (0.03, 0.10) 0.07 (0.03, 0.09)

invest 0.07 (0.04, 0.11) 0.06 (0.04, 0.09) 0.06 (0.04, 0.09) 0.06 (0.04, 0.09)

lev 0.06 (0.03, 0.10) 0.04 (0.01, 0.06) 0.06 (0.03, 0.10) 0.06 (0.03, 0.10)

ltrev -0.02 (-0.05, 0.00) -0.01 (-0.03, 0.01) -0.00 (-0.00, 0.03) -0.00 (-0.00, 0.03)

mktcap -0.11 (-0.22, -0.01) -0.13 (-0.16, -0.10) -0.12 (-0.21, -0.03) -0.11 (-0.20, 0.00)

mom -0.24 (-0.28, -0.19) -0.12 (-0.15, -0.10) -0.13 (-0.16, -0.07) -0.14 (-0.18, -0.09)

noa -0.04 (-0.09, 0.00) -0.03 (-0.06, -0.01) -0.03 (-0.06, -0.01) -0.03 (-0.06, -0.01)

oa 0.04 (0.02, 0.06) 0.04 (0.02, 0.06) 0.03 (0.01, 0.05) 0.03 (0.00, 0.05)

ol -0.01 (-0.08, 0.07) 0.00 (-0.02, 0.03) 0.00 (0.00, 0.01) 0.00 (0.00, 0.01)

pcm -0.02 (-0.07, 0.02) -0.02 (-0.05, 0.00) -0.00 (-0.00, 0.03) -0.00 (-0.00, 0.03)

pm -0.06 (-0.10, -0.01) -0.05 (-0.08, -0.02) -0.04 (-0.08, -0.01) -0.04 (-0.08, -0.01)

prof 0.02 (-0.03, 0.08) 0.02 (0.00, 0.04) 0.01 (-0.02, 0.02) 0.01 (-0.02, 0.02)

q -0.11 (-0.19, -0.01) -0.02 (-0.03, 0.01) -0.02 (-0.04, 0.04) -0.02 (-0.04, 0.05)

rna 0.10 (0.06, 0.14) 0.10 (0.08, 0.13) 0.08 (0.04, 0.11) 0.08 (0.04, 0.10)

roa 0.01 (-0.07, 0.10) -0.01 (-0.04, 0.01) 0.00 (0.00, 0.01) 0.00 (0.00, 0.00)

roe 0.09 (0.01, 0.18) 0.03 (0.00, 0.05) 0.00 (-0.05, 0.00) 0.00 (-0.06, 0.00)

s2p 0.02 (-0.06, 0.12) -0.01 (-0.03, 0.02) 0.00 (-0.01, 0.00) 0.00 (-0.01, 0.00)

strev -0.07 (-0.09, -0.04) -0.03 (-0.05, -0.01) -0.03 (-0.05, 0.00) -0.03 (-0.05, 0.00)

suv -0.20 (-0.22, -0.18) -0.16 (-0.17, -0.14) -0.18 (-0.20, -0.16) -0.18 (-0.20, -0.16)

turn 0.29 (0.26, 0.32) 0.24 (0.21, 0.26) 0.28 (0.25, 0.31) 0.28 (0.25, 0.32)

w52h 0.13 (0.08, 0.16) 0.05 (0.02, 0.08) 0.05 (0.00, 0.08) 0.06 (0.02, 0.10)

Table A4.3: Log. Regression of Explosiveness Up based on FF3-adjustments against Firm Characteristics

This table presents estimates from logistic and penalized logistic regressions using the indicator of explosion up detection over

a week as the dependent variable. The explanatory variables include a set of firm characteristics described in Freyberger et al.

(2020). The results are reported for elastic net penalization with hyperparameter α “ 0 (Ridge regression), α “ 0.5, and α “ 1

(Lasso regression). The penalty hyperparameter λ , which controls the strength of the penalty, is determined by minimizing the error

through 10-fold cross-validation (see Hastie et al. (2009) for details). Bootstrapped 90% confidence intervals are also provided for

the results. The sample covers 1,575,707 week-firm observations since September 2003 to December 2022.
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Logit Ridge ENet Lasso

Variable Estimate (Q5, Q95) Estimate (Q5, Q95) Estimate (Q5, Q95)

Intercept -2.81 (-2.81, -2.80) -2.81 (-2.82, -2.80) -2.81 (-2.82, -2.80) -2.81 (-2.82, -2.80)

a2me 0.02 (0.01, 0.03) 0.06 (0.04, 0.09) 0.04 (0.05, 0.08) 0.04 (0.05, 0.08)

assets -0.44 (-0.53, -0.34) -0.26 (-0.29, -0.18) -0.21 (-0.25, -0.09) -0.20 (-0.24, -0.08)

ato -0.01 (-0.05, 0.03) -0.00 (-0.04, 0.04) 0.00 (-0.01, 0.03) 0.00 (0.00, 0.03)

betahml 0.05 (0.03, 0.08) 0.04 (0.02, 0.06) 0.04 (0.02, 0.07) 0.04 (0.02, 0.07)

betamkt -0.17 (-0.20, -0.15) -0.15 (-0.17, -0.13) -0.15 (-0.17, -0.12) -0.15 (-0.17, -0.12)

betasmb -0.13 (-0.16, -0.10) -0.12 (-0.15, -0.10) -0.12 (-0.14, -0.10) -0.12 (-0.15, -0.10)

bidask -0.41 (-0.46, -0.35) -0.36 (-0.40, -0.31) -0.40 (-0.46, -0.36) -0.39 (-0.44, -0.34)

bm -0.16 (-0.23, -0.09) -0.12 (-0.16, -0.07) -0.10 (-0.16, -0.05) -0.09 (-0.15, -0.03)

c -0.02 (-0.06, 0.02) -0.02 (-0.06, 0.01) -0.01 (-0.02, 0.03) -0.01 (-0.02, 0.03)

cto 0.24 (0.15, 0.32) 0.12 (0.05, 0.15) 0.09 (0.01, 0.15) 0.08 (-0.02, 0.13)

e2p -0.04 (-0.09, 0.00) -0.04 (-0.07, 0.00) -0.02 (-0.04, 0.03) -0.02 (-0.04, 0.03)

freecf -0.14 (-0.19, -0.10) -0.11 (-0.14, -0.07) -0.11 (-0.15, -0.07) -0.10 (-0.13, -0.05)

idiovol -0.01 (-0.04, 0.02) 0.01 (-0.02, 0.04) 0.00 (-0.02, 0.02) 0.00 (-0.02, 0.02)

intmom -0.26 (-0.29, -0.23) -0.19 (-0.22, -0.16) -0.22 (-0.25, -0.18) -0.23 (-0.26, -0.20)

invest -0.02 (-0.06, 0.01) 0.02 (0.00, 0.06) 0.02 (-0.01, 0.04) 0.02 (-0.01, 0.04)

lev 0.06 (0.02, 0.09) 0.06 (0.03, 0.09) 0.06 (0.02, 0.09) 0.06 (0.02, 0.09)

ltrev 0.06 (0.03, 0.08) 0.07 (0.05, 0.10) 0.07 (0.05, 0.10) 0.07 (0.05, 0.09)

mktcap 0.24 (0.14, 0.35) 0.08 (0.00, 0.11) 0.00 (-0.13, 0.00) 0.00 (-0.12, 0.00)

mom 0.71 (0.66, 0.75) 0.61 (0.58, 0.64) 0.69 (0.65, 0.73) 0.70 (0.67, 0.75)

noa 0.04 (0.00, 0.09) 0.04 (0.00, 0.07) 0.04 (0.01, 0.08) 0.04 (0.01, 0.08)

oa 0.00 (-0.02, 0.02) 0.00 (-0.02, 0.02) 0.00 (-0.02, 0.02) 0.00 (-0.01, 0.02)

ol -0.24 (-0.33, -0.16) -0.11 (-0.15, -0.05) -0.08 (-0.13, 0.01) -0.07 (-0.11, 0.02)

pcm 0.05 (0.00, 0.09) 0.03 (0.00, 0.07) 0.00 (-0.03, 0.01) 0.00 (-0.03, 0.01)

pm -0.05 (-0.10, 0.00) -0.04 (-0.08, 0.00) -0.02 (-0.04, 0.02) -0.02 (-0.04, 0.02)

prof -0.11 (-0.16, -0.06) -0.07 (-0.11, -0.03) -0.03 (-0.06, 0.01) -0.03 (-0.06, 0.01)

q -0.15 (-0.24, -0.07) -0.07 (-0.10, -0.03) -0.06 (-0.10, 0.03) -0.06 (-0.11, 0.02)

rna 0.04 (0.00, 0.08) 0.06 (0.04, 0.10) 0.04 (0.01, 0.08) 0.04 (0.01, 0.08)

roa -0.14 (-0.24, -0.05) -0.07 (-0.11, -0.01) -0.03 (-0.06, 0.06) -0.02 (-0.04, 0.07)

roe 0.19 (0.10, 0.27) 0.12 (0.06, 0.16) 0.04 (-0.07, 0.08) 0.03 (-0.08, 0.06)

s2p 0.12 (0.03, 0.21) 0.05 (0.00, 0.11) 0.00 (-0.07, 0.00) 0.00 (-0.06, 0.00)

strev 0.11 (0.09, 0.14) 0.07 (0.05, 0.10) 0.09 (0.07, 0.11) 0.09 (0.06, 0.11)

suv -0.16 (-0.18, -0.14) -0.17 (-0.19, -0.15) -0.16 (-0.18, -0.14) -0.16 (-0.18, -0.14)

turn 0.28 (0.25, 0.31) 0.30 (0.28, 0.33) 0.29 (0.27, 0.32) 0.29 (0.27, 0.32)

w52h -0.74 (-0.78, -0.70) -0.62 (-0.65, -0.58) -0.68 (-0.71, -0.64) -0.68 (-0.71, -0.63)

Table A4.4: Log. Regression of Explosiveness Down based on FF3-adjustments against Firm Characteristics

This table presents estimates from logistic and penalized logistic regressions using the indicator of explosion down detection over

a week as the dependent variable. The explanatory variables include a set of firm characteristics described in Freyberger et al.

(2020). The results are reported for elastic net penalization with hyperparameter α “ 0 (Ridge regression), α “ 0.5, and α “ 1

(Lasso regression). The penalty hyperparameter λ , which controls the strength of the penalty, is determined by minimizing the error

through 10-fold cross-validation (see Hastie et al. (2009) for details). Bootstrapped 90% confidence intervals are also provided for

the results. The sample covers 1,575,707 week-firm observations since September 2003 to December 2022.
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A5 Model

This section covers missed steps and proofs for section 7. The sellers are indexed by s P r0,Ss. An equi-

librium is characterized by set of prices tps1usPr0,Ss. WLOG, similar to the main section all equilibria are

considered conditional to ps ě ps1 if s ě s1. Since ps is monotonic in s, ps´ exists for any s ą 0, and has at

most countable number of discontinuity over the interval r0,Ss and is differentiable almost everywhere.83

A5.1 First Model. Missed steps for Y < 8.

In the model section, I showed that the mass of agents submitting price ps given the targeted profit π˚ is

mppsq “
π˚ ˆ pps ´V q´2

φB

´

Φ´1
B

´

1 ´ π˚

ps´V

¯¯ , pr ą p (A5.4)

As the buy orders arrive to the market with speed C, the price will change according to the equation:
ż pptq

p
mppqd p “ C ˆ t.

Taking the derivative, we derive

p1ptq “
C

mppptqq
. (A5.5)

The more agents submit same price mppptqq the smaller price impact for additional market orders. Ex-

plosiveness means that the price path is convex, requiring p2ptq ą 0. Taking the second derivative of the

same equation we get

p2ptqmppptqq ` p1ptq2m1ppptqq “ 0,

and ultimately answer in (12). The derivative of mass with respect to price is

m1ppsq “ ´
π˚

ˆ

2pps ´V qφB

´

Φ´1
B

´

1 ´ π
ps´V

¯¯2
` π˚φ 1

B

´

Φ´1
B

´

1 ´ π˚

ps´V

¯¯

˙

pps ´V q4
´

φB

´

Φ´1
B

´

1 ´ π˚

ps´V

¯¯¯3

or

m1ppsq “ ´
π˚

´

2pps ´V qφB pzq2 ` π˚φ 1
B pzq

¯

pps ´V q4 pφB pzqq3 ,

where z “ Φ´1
B

´

1 ´ π˚

ps´V

¯

.

Recall, p “ π˚ `V . Hence, π˚ controls the total mass. Moreover,

mppq “ φB p0q´1 ˆ pp ´V q´1 “ φB p0q´1 ˆ π˚´1.

83The differentiability of monotonic function almost everywhere is called Lebesgue’s theorem.
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Consider case where Y ă 8.

mpY q “ φB p0q´1 ˆ pp ´V q´1 “ φB p0q´1 ˆ π˚´1.

π˚ “ pY ´V q ˆ p1 ´ ΦBpSqq.

Note that negative sign of m1ppsq would be guaranteed by

φ 1
Bpzq

φBpzq
ě ´2φBpzq ˆ

pps ´V q
π˚ , p ď ps ď Y,

or by
φ 1

Bpzq
φBpzq

ě ´2 ˆ
φBpzq

1 ´ ΦBpzq
, 0 ď z ď S.

A5.2 First Model. Y = 8.

If Y “ 8 the case with the possible size of demand exceeding the number of sellers, B ą S , does not have

an equilibrium. In this case, a risk neutral seller will be always better off increasing the price to infinity

unconditional on actions of other sellers.

If B ă S , then, similar to case Y ă 8, the unique symmetric equilibrium with ps “ V for all s is possible.

The proof repeats case for Y “ 8: Bertrand-type competition argument forces the equilibrium to the only

level where p˚ ´ ε is not a profitable deviation.

The only interesting case is B “ S , which can be considered a zero-net supply of the asset, indicating

a scenario where the asset completely ’changes hands.’ In this case, multiple equilibria are defined by the

parameter π˚ ě 0, which pins down the expected profit for the sellers. π˚ “ 0 results in the symmetric

equilibrium ppsq “ V , given that if non-zero mass of sellers submit ppsq ą V they earn profit and π˚0 must

be greater than zero.

If π ą 0, given the profit, the indifference condition still pins down the mass of sellers by (A5.4).

Similarly, (12) is not affected by infinite reservation value Y .

A5.2.1 Power distribution function

Let us consider the case when ΦBpBq “ 1 ´ p1 ` Bq1´β , β ą 1. Solving,

p1ptq “
Cpβ ´ 1q

π˚ pps ´V q2 ˆ

ˆ

π˚

ps ´V

˙

β
β´1

derive

pptq “ V `

ˆ

U1t `U2

β ´ 1

˙β´1

,
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for positive constants U1 and U2 that are identified by terminal conditions for pp0q and ppSC´1q.

π˚ “ pY ´V q ˆ p1 `Sq1´β .

U1 “ Cpβ ´ 1qπ˚ 1
β´1 and U2 is unknown constant to match terminal condition ppC´1Sq “ Y.

pY ´V q
1

β´1 “ π˚ 1
β´1S `

U2

β ´ 1

Regroup to get,

pptq “ V ` pY ´V q

ˆ

1 `Ct
1 `S

˙β´1

.

A5.2.2 Exponential Distribution

Let us consider the case when ΦBpBq “ 1 ´ e´βB, β ą 0. Solving for

p1ptq “ βcppptq ´V q

We derive price for some constant U1

pptq “ V `U1eCβ t .

To match ppC´1Sq “ Y,

U1 “ pY ´V qe´βS ” π˚,

and

pptq “ V `YepCt´Sqβ .

A5.2.3 Half-Normal Distribution

Consider environment where the inelastic demand is gaussian constrained to be positive84:

φBpB;β q “
2
a

β
?

π
exp

`

´βB2˘

, ΦBpB;β q “ 2ΦN p
a

0.5βBq ´ 1

Then

p1ptq “
2cppptq ´V q2

a

β
π3{2 exp

ˆ

´β pΦ´1
B p1 ´

π˚

ps ´V
;β qq2

˙

As we have observed, the speed of the explosiveness tends to be inversely proportional to the tail of the

distribution ΦB. Let us guess solution in the form:

pptq “ V `U1 pΦN pU2t `U3qq´1

84If the realized demand is negative, one would consider inelastic sellers versus competitive buyers.
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Plugging this into the differential equation and exploiting ΦN pxq “ 1 ´ ΦN p´xq, we obtain,

´φN pU2t `U3qU2 “ U1
2C

a

β
π3{2 exp

ˆ

´β pΦ´1
N p

1
2

π˚

U1
ΦN pU2t `U3qqq2

˙

Simplifying further with U1 “ π˚{2 we find:

´φN pU2t `U3qU2 “
C

a

β
π1{2 exp

`

´β pU2t `U3q2˘

.

To equalize constants next to the Gaussian density, set U2 “ ´C
a

0.5β , which yields the solution in the

form:

pptq “ V `
π˚

2ΦN

”

´
a

0.5βCt ´C1

ı .

Using that p “ π˚ `V , we derive that C1 “ 0,

pptq “ V `
π˚

2ΦN

”

´
a

0.5βCt
ı ,

and as required:

π˚ “ 2pY ´V qΦN

”

´
a

0.5β ˆS
ı

.

A5.3 Closed form solution for price and profit in model with insider

Once, 9bptq is fixed, the uniqueness follows from the fact that p 9πptq, 9pptq, 9pc
I ptq, 9pc

Bptq, 9pIptq, 9pBptqq form the

linear system

9πptq “ πptq ˆ

ˆ

pc
I ptq ˆ

φV ppptqq
1 ´ ΦV ppptqq

ˆ 9pptq ` pc
Bptq ˆ

φSprptqq
1 ´ φSprptqq

ˆ 9bptq
˙

9πptq “ 9pptq ´ 9pc
Bptq ˆV ´ ErṼ |Ṽ ě pptqs ˆ

ˆ

9pc
I ptq ´ pc

I ptq ˆ
φV ppptqq

1 ´ ΦV ppptqq
ˆ 9pptq

˙

.

9pc
I ptq “

9pIptq ˆ pBptq ´ pIptq ˆ 9pBptqq
ppIptq ` pBptqq2

9pc
Bptq “ 1 ´ 9pc

I ptq

9pIptq “ ´φV ppptqq ˆ 9pptq ˆ pI,0

9pBptq “ ´φSprptqq ˆ 9bptq ˆ p1 ´ pI,0q,

(A5.6)

with the clear terminal condition for each of the six processes. The processes together satisfy conditions of

Cauchy-Lipschitz theorem.

To find the solution, guess and verify using alternative indifference condition, that can be justified as an

ex-ante strategy to wait until the very end:

πptq “ π̄ ˆ
´

pc
I ptqˆ

1 ´ ΦV pY q
1 ´ ΦV ppptqq

` pc
Bptq ˆ

1 ´ ΦBpSq
1 ´ ΦBpbptqq

˙

(A5.7)
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Plugging, the exponential conditions, we have

e´Sβ tp1 ´ pI,0qpptq ´ e´Sβ p1 ´ pI,0qπ̄ ´ e´Y α pI,0π̄ ´
e´α pptq pI,0

α
“ 0 (A5.8)

Note that differentiating this condition one would immediately derive (21). To derive (22), we differentiate

the condition one more time.

Define

c1ptq “ e´Sβp1´tq ˆ π̄, c2ptq “
e´Y α`Sβ t pI,0

1 ´ pI,0
ˆ π̄.

Then (A5.8) simplifies to

pptq ´ c1ptq ´ c2ptq “
e´α pptq`Stβ pI,0

αp1 ´ pI,0q
.

Finally, regrouping we get equality that is equivalent to (19):

α ppptq ´ c1ptq ´ c2ptqqeαppptq´c1ptq´c2ptqq “
pI,0

1 ´ pI,0
e´αpc1ptq`c2ptqq`Stβ .

Plugging back the price into the conditional probabilities:

pc
I ptq “

e´α pptq pI,0

e´Sβ tp1 ´ pI,0q ` e´α pptq pI,0

pc
Bptq “

e´Sβ tp1 ´ pI,0q

e´Sβ tp1 ´ pI,0q ` e´α pptq pI,0

(A5.9)

and path for the profit:

πptq “
π̄

e´Sβ tp1 ´ pI,0q ` e´α pptq pI,0
ˆ

´

e´αY pI,0 ` e´Sβ p1 ´ pI,0q
¯

(A5.10)

or

πptq “ π̄ ˆ α´1 e´αY pI,0 ` e´Sβ p1 ´ pI,0q

e´Sβ tp1 ´ pI,0qpα´1 ` pptqq ´
´

e´αY pI,0 ` e´Sβ p1 ´ pI,0q
¯

π̄
(A5.11)

It is trivial to check that the solution satisfies the necessary conditions in (A5.6).

A5.4 Comparative Statics for π̄

In the first place, the terminal profit depends positively on α and Y , while it has a negative correlation with S

and pI,0. Hence, the profit is positively impacted by a reduced supply from other sellers, a lower probability

and average knowledge of insiders, and a higher marginal price at which a buyer is willing to purchase.

Bπ̄
Bα

“
eSβ pI,0

´

eSβ pI,0 ` eY αp1 ´ pI,0qp1 `Y α `Y 2α2q
¯

´

eY αp1 ´ pI,0q ` eSβ pI,0

¯2
α2

ą 0
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Bπ̄
BS

“ ´
eY α`Sβ p1 ´ pI,0qpI,0p1 `Y αqβ
´

eY αp1 ´ pI,0q ` eSβ pI,0

¯2
α

ă 0

Bπ̄
BY

“
eY αp1 ´ pI,0q

´

eY αp1 ´ pI,0q ` eSβ pI,0p2 `Y αq
¯

´

eY αp1 ´ pI,0q ` eSβ pI,0

¯2 ą 0

Bπ̄
BpI,0

“ ´
eY α`Sβ p1 `Y αq

´

eY αp1 ´ pI,0q ` eSβ pI,0

¯2
α

ă 0

Bπ̄
Bβ

“
eY α`Sβ p1 ´ pI,0qpI,0Sp1 `Y αq

peY αp1 ´ pI,0q ` eSβ pI,0q2α

A5.5 Comparative statics for the initial jump

Let us start by analyzing the size of the initial jump when trading begins. To simplify our expressions, let us

introduce non-negative constants:

Ǎ0 “
pI,0

1 ´ pI,0
e´Y α Ǎ1 “ W

ˆ

pI,0

1 ´ pI,0
ˆ eA0´e´SβY α

˙

Then the initial price (23) simplifies to

pp0q “ e´SβY `
Ǎ1 ´ Ǎ0

α
(A5.12)

The Trade Condition can be rewritten as

α´1Ǎ0 ď e´SβY

A5.5.1 Changing ex-ante probability of the insider

Using that W 1pxq “ Wpxq
xp1`Wpxqq , the initital jump sensitivity to the share of insiders is,

Bpp0q
BpI,0

“
α´1

pI,0p1 ´ pI,0qp1 ` Ǎ1q
ˆ

“

Ǎ1 ´ Ǎ0
‰

(A5.13)

let us do the Taylor expansion of the A1 ´ A0 around no insider case, pI,0 “ 0, firstly.

´

e´e´SβY α ´ e´Y α
¯

pI,0 ` Opp2
I,0q

First of all, given the Taylor expansion the initial jump to the no-insider case is

e´SβY
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The greater the supply of the asset among the sellers, S , the lower the initial price impact. Simultane-

ously, a larger expected average demand from the seller, influenced by β , or a higher marginal cost of the

non-elastic buyer, denoted as Y , leads to a larger initial jump.

The first term of the Taylor expansion is always greater than zero because e´Sβ ă 1. This guarantees

both an increase in Ǎ1 ´ Ǎ0 around the no-insider case and an increase in the jump size85 as soon as the

probability of the existence of insiders deviates from zero. Finally, combining it with

B logpǍ1 ´ Ǎ0q
BpI,0

“
1

pI,0p1 ´ pI,0qp1 ` Ǎ1q
,

we immediately get that Ǎ1 ´ Ǎ0 is always positive and strictly increasing function in pI,0.

A5.5.2 Converging fully informed case

To get the limit when one converge to the fully informed case, pi,0, one must also relax parameter α , so that

Trade Condition is not violated. Balancing those two parameters to set zero profit to sellers,

αY “ W
ˆ

pI,0

1 ´ pI,0
ˆ eSβ

˙

,

one would get an upper limit for the initial price,

p0 “ α´1W
ˆ

pI,0

1 ´ pI,0

˙

ď Y.

Nevertheless, the ratio of the prices

p0

Y
“

W
´

pI,0
1´pI,0

¯

W
´

pI,0
1´pI,0

ˆ eSβ
¯

converges to one as the share of informed trader converge to one, i.e., price immediately jumps to the

terminal price level.

A5.5.3 Changing ex-ante knowledge of the insider

To get the sensitivity of pp0q to jump it is more convenient to differentiate (A5.8) with respect to α

Bpp0q
Bα

“
e´Y α´Sβ

´

´eppp0q`Y qαp1 ´ pI,0q Bπ̄
Bα α2 ´ epp0qα`Sβ pI,0pBπ̄ ´ π̄Y qα2 ` eY α`Sβ pI,0p1 ` pp0qαq

¯

pep0αp1 ´ pI,0q ` pI,0qα2

85as the left term of (??) is strictly positive
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Plugging the previously derived values for π̄ and Bπ̄
Bα , simplify the expression to

Bpp0q
Bα

“
´e´Y α pI,0

pep0αp1 ´ pI,0q ` pI,0qα2 ˆ
`

eY αp1 ` p0αq ´ ep0αp1 `Y αq
˘

ă 0.

Here, we used that the last term is strictly positive since exαp1 ` xαq´1 is strictly increasing function 86 and

pp0q ă Y .

A5.5.4 Changing the supply and the marginal cost of buyer

Differentiate (A5.8) with respect to S and Y :

Bpp0q

BS
“

ep0α
´

e´Y α pI,0
Bπ̄
BS ` e´Sβ p1 ´ pI,0q

´

Bπ̄
BS ´ π̄β

¯¯

ep0αp1 ´ pI,0q ` pI,0
ă 0

Using that
ˆ

e´Y α pI,0
Bπ̄
BS

` e´Sβ p1 ´ pI,0q

ˆ

Bπ̄
BS

´ π̄β
˙˙

ă 0.

The closed form is
Bpp0q

BS
“ ´

epp0qα´Sβ p1 ´ pI,0qY β
epp0qαp1 ´ pI,0q ` pI,0

ă 0.

Similarly,

Bpp0q
BY

“
ep0α

´

e´Sβ p1 ´ pI,0q ` e´Y α pI,0

¯

ep0αp1 ´ pI,0q ` pI,0
ą 0,

and
Bpp0q

Bβ
“ ´

epp0qα´Sβ p1 ´ pI,0qSY
epp0qαp1 ´ pI,0q ` pI,0

ă 0

A5.6 Comparative statics for the curvature

To analyze the price along the path, let us firstly note that around the no-insider case

pptq “ c1ptq.

Similar to the previous section, define

A0ptq “
pI,0

1 ´ pI,0
ˆ e´Y α`Sβ t “

c2ptq
π̄

A1ptq “ W
ˆ

pI,0

1 ´ pI,0
ˆ e´pc2ptq`c1ptqqα`Stβ

˙

“ W
ˆ

pI,0

1 ´ pI,0
ˆ eA0ptq`Sβ t´e´Sβp1´tqY α

˙

pptq “ e´Sβp1´tqY ` α´1pA1ptq ´ A0ptqq,

86exponent grows faster than its first two terms of the Taylor expansion
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Note that A1p0q and A0p0q match the previously defined Ǎ1 and Ǎ0. Then

Bpptq
BpI,0

“
α´1

pI,0p1 ´ pI,0qp1 ` A1ptqq
ˆ pA1ptq ´ A0ptqq (A5.14)

Using similar technique we used for t “ 0 case, we immediately get that pptq is strictly increasing in pI,0.

Consider again the case when the trade condition binds, π̄ “ 0:

c1ptq ` c2ptq “ 0, α´1Ǎ0 “ e´SβY, αY “ W
ˆ

pI,0

1 ´ pI,0
ˆ eSβ

˙

.

Using each of the equivalent conditions, we get:

pptq “ α´1W
ˆ

pI,0

1 ´ pI,0
ˆ e Stβ

˙

ď Y,

Note that as pI,0 goes to infinity not only pptq turns to be closer to Y as we showed but pptq converges to a

more linear function:

p1ptq “
α´1Sβ

1 `
´

W
´

pI,0
1´pI,0

ˆ e Stβ
¯¯´1 « α´1Sβ .

Finally, to capture the dynamic of average curvature of the price path, note that

Bκav

BpI,0
“

B
BpI,0

´

ż 1

0

B2 pptq
Bt2 dt

¯

“
ż 1

0

B
Bt

´ B2 pptq
BtBpI,0

¯

dt “
B2 pp1q
BtBpI,0

´
B2 pp0q
BtBpI,0

,

i.e., it is enough to capture difference at the start and end of the price paths. First, note that B2 pp1q
BtBpI,0

ă 0, since

pp1q “ Y and pp1 ´ εq is strictly decreasing in pI,0. To show that B2 pp0q
BtBpI,0

ą 0, perform the few steps.

Take the partial derivative of (21) to get:

pSβ q´1 B2 pptq
BtBpI,0

“
Bpptq
BpI,0

ˆ

˜

p1ptq
pptq

pSβ q´1 ` pptq
eα pptqeStβ pI,0p1 ´ pI,0qα

peα pptqp1 ´ pI,0q ` eStβ pI,0q2

¸

´

pptq
eα pptqeStβ

peα pptqp1 ´ pI,0q ` eStβ pI,0q2

Regroup, using (21) multiple times, to express

B2 pptq
BtBpI,0

“
Bpptq
BpI,0

ˆ
p1ptq
pptq

ˆ

¨

˚

˝

1 ` pptq ˆ eStβ ˆ

¨

˚

˝

pI,0α ´ p1 ´ pI,0q´1 ˆ
´

Bpptq
BpI,0

¯´1

eα pptqp1 ´ pI,0q ` eStβ pI,0

˛

‹

‚

˛

‹

‚

We must show that the big term in the parentheses is not-negative. Plugging t “ 0, we must just show that

eα pptqp1 ´ pI,0q ` pI,0 ` pp0q ˆ

˜

pI,0α ´ p1 ´ pI,0q´1 ˆ

ˆ

Bpp0q
BpI,0

˙´1
¸

ě 0
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Substituting in the combination of (A5.12) and (A5.13),

ˆ

Bpp0q
BpI,0

˙´1

“

`

1 ` Ǎ1
˘

pI,0p1 ´ pI,0q

pp0q ´ e´SβY
,

and the indifference condition (A5.8),

eα pp0q “
pI,0

p1 ´ pI,0qα

ˆ

pp0q ´ e´Rβ π̄ ´
e´Y α pI,0π̄

1 ´ pI,0

˙´1

.

We can simplify it to requirement of

1 ´
p1 ` Ǎ1qpp0q

pp0q ´ e´SβY
` pp0qα `

eY α`Rβ p1 ´ pI,0q

eRβ pI,0 ` eY αp1 ´ pI,0q
´

pp0q ´ e´SβY
¯

α
ě 0

It is worth noting that we canceled out pI,0. If pI,0 “ 0 then B2 pp0q
BtBpI,0

“ 0. Substituting, z “ pp0q ´ e´SβY ě 0,

d “ eαY ą 0, h “ e´Sβ ą 0, the inequality simplifies to

z2 `

d2p1 ´ pI,0q2α ` d2p1 ´ pI,0q2α2˘

` z
`

d2p1 ´ pI,0q2 ` dp1 ´ pI,0qpI,0 ` 2dp1 ´ pI,0qpI,0α
˘

` p2
I,0 ě 0

On the left-hand side, we have an upward-facing parabola with roots of the same negative sign, because

d2p1 ´ pI,0q2 ` dp1 ´ pI,0qpI,0 ` 2dp1 ´ pI,0qpI,0α ą 0.

Since the parabola is greater than zero for all non-negative values of z, this concludes the proof of

B2 pp0q
BtBpI,0

ą 0.

Thus, we get the average curvature of the price path is a decreasing function in the probability of insider

entering the market.

Bκav

BpI,0
ă 0.

A6 Explosions around short interest fluctuations
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Figure A6.8: FF3-Abnormal return for top-decile SIR vs Other Stocks

This plot shows the average 10-day risk-adjusted return following the dissemination of short-interest data. The blue dots correspond

to the equally-weighted average return of stocks with reported SIR in the top decile, while the red dots correspond to the equally-

weighted return of other stocks. The 95%-confidence interval around the averages is based on standard errors clustered for firm-year

interaction. To be included, the stock must have a closing price of at least $5 thirty days before the disclosure and a good price in

the TAQ dataset over the 10-day interval, allowing for the estimation of explosiveness measures.
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Figure A6.9: Explosion up for top-decile SIR vs Other Stocks

This plot shows the estimated probability of explosion up (in percentage terms) following the dissemination of short-interest data.

The blue dots correspond to logit-based estimate to be explosive up for stocks with reported SIR in the top decile, while the red

dots correspond to other stocks. A stock is considered explosive up if we detect an explosion up according SADF procedure with

k “ 1 and r “ 0.2 over at least one of the five subsequent (overlapping) 10-day intervals following the disclosure date. The 95%-

confidence interval around the averages is based on standard errors clustered for firm-year interaction. To be included, the stock

must have a closing price of at least $5 thirty days before the disclosure, and have a good price in TAQ dataset over the 10-days

interval allowing estimation of explosiveness measure.
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Figure A6.10: Explosion up for top-decile SIRpo vs Other Stocks

This plot shows the estimated probability of explosion up (in percentage terms) following the dissemination of short-interest data.

The blue dots correspond to logit-based estimate to be explosive up for stocks with reported SIRpoin the top decile, while the red

dots correspond to other stocks. A stock is considered explosive up if we detect an explosion up according SADF procedure with

k “ 1 and r “ 0.2 over next 10-day intervals following the disclosure date. The 95%-confidence interval around the averages is

based on standard errors clustered for firm-year interaction. To be included, the stock must have a closing price of at least $5 thirty

days before the disclosure, and have a good price in TAQ dataset over the 10-days interval allowing estimation of explosiveness

measure.
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